Science Spotlight

Subscribe

Receive Science Institute news by email.

    All Science Spotlight Articles

    rss

    Small brown rodent on white background
    A tagged Amargosa vole. (National Geographic stock photo)

    Group of three people wearing hats standing in dirt and cut grass next to large cage made of chain link fence in grassy area.
    The “soft release structures” built for the voles were constructed in their natural habitat, giving the captive-bred animals time to adjust to the outdoors. (Photo courtesy of UC Davis School of Veterinary Medicine)
     

    Wildlife veterinarians recently hit an important milestone in their collective efforts to conserve a tiny endangered mammal native to the Mojave Desert. The population of Amargosa voles (Microtus californicus scirpensis), restricted to one small town in Inyo County, is now perilously small, due to habitat destruction, climate change and water diversions created to benefit humans. With much of the voles’ natural habitat now decimated, scientists estimate that fewer than 500 currently exist in the wild. (Read the original California Department of Fish and Wildlife Science Spotlight on Amargosa voles).

    Co-led by CDFW Wildlife Veterinarian Dr. Deana Clifford and UC Davis Veterinarian Dr. Janet Foley, the Amargosa vole recovery program started in 2012. After the population became nearly extinct in 2014, a captive breeding program was launched at the UC Davis School of Veterinary Medicine as a last-ditch effort to save these tiny creatures, which are a key link in the food chain in their native habitat.

    Since the breeding program’s inception, 364 voles have been born and weaned. Several small-scale trial releases have been attempted over the last few years, leading the scientists to identify a clear problem: the animals raised in captivity didn’t necessarily know how to behave in the wild. “The colony animals were a little pampered,” said Foley, referring to the first few trial releases. “They didn’t seem to have the skills to thrive on their own.”

    So how to teach a pampered vole to fend for itself? The team members tried several approaches, finally solving an important piece of the puzzle last month. The key was to introduce captive-bred animals to their wild counterparts – and let the former learn from the latter.

    The team chose to pair six captive males from the facility at UC Davis with six wild caught females. The voles were introduced to each other for 10 days in temporary indoor cages in Shoshone Village to see which pairs appeared compatible for mating.

    Once voles had established pairs, they were moved outdoors. Large dog runs were carefully constructed in their marshland, over the native bulrush that provide shelter and food for the voles. Each run was lined with hardware cloth in order to contain the voles and keep out predators (including coyotes, bobcats, snakes, numerous bird species, bullfrogs, house cats and stray dogs).

    For the next 21 days, the new vole pairs continued to get to know each other. Project staff used pit tags – basically telemetry microchips – to monitor their movements and to ensure that they were thriving.

    “We used an antenna array around the feeding station, which connects to a computer, so we could watch how they move,” Foley explained. “Most of the time they’re under the bulrush so you can’t see them with the naked eye … but we were amused to see that they’re really not that shy. One male built a tunnel in his natural habitat, but when staff was nearby, he would come out and look right at us before he grabbed food and went back in.”

    At the end of 21 days, the kennel doors were opened, allowing the voles to venture out on their own. Foley says that the team was somewhat surprised to see that the pairs generally continued to come and go from the kennels, demonstrating a comfort level with the makeshift shelter. More importantly, at least one of the pairs produced a litter, and several of the other females may be pregnant.

    At some point, the team will remove the kennels entirely, at least until the next captive release occurs, likely sometime next spring or summer.

    Foley said that she views the July release as a rousing success – not just because the animals are thriving, but because of the body of knowledge the team learned from this experience. “It was really important for us to learn that the colony animals could learn survival skills from their wild counterparts,” she explained. “It was a gamble, and the fact that it worked is so exciting.”

    The team will continue to use this technique for the foreseeable future. Ultimately, the goal is to create sustainable populations of Amargosa voles in several different areas. “If there’s a big fire, it could wipe out every marsh in the area,” Foley says. “Our work – and the techniques we are working to perfect -- will help ensure their survival.”

    The captive breeding program is one part of a larger joint effort between agencies, universities and nonprofits to save the Amargosa vole. “Together with our partners at the US Fish and Wildlife Service, BLM, UC Davis and UC Berkeley, Shoshone Village and the Amargosa Conservancy, we are conducting habitat restoration, translocations, genetics and health monitoring and community engagement,” Clifford added. “What we’ve learned here not only helps voles, but also helps conserve the other species that rely on these fragile desert marshes.”

    Photos Copyright UC Davis School of Veterinary Medicine. Top Photo: One of the recovery team staff members monitoring the vole’s outdoor enclosure during the introductory period. (Photo Courtesy of UC Davis School of Veterinary Medicine)

    Media contacts:
    Kirsten Macintyre, CDFW Communications, (916) 322-8988
    Trina Wood, UC Davis Communications, (530) 752-5257

     

    Categories:   Wildlife Research

    sunrise over a California salt marsh
    two young women in a marsh, one holds a tiny mouse

    Deep in the pickleweed in the San Francisco, San Pablo and Suisun Bays, the tiny salt marsh harvest mouse (Reithrodontomys raviventris) tries to avoid predators and compete with other species for prime habitat. Food and cover are abundant, but its overall habitat is shrinking as humans encroach upon its home range. In south San Francisco Bay alone, 95 percent of the historic salt marsh has been lost to industrial parks and subdivisions. Annual flooding in the winter can be perilous, too -- when vegetation is topped by rising tides, the mice must scramble to find taller vegetation or into upland habitat (grasses around the wetlands that don’t get flooded by the tides).

    As part of the effort to monitor and conserve this state- and federally-listed endangered species, biologists conduct annual surveys of the salt marsh harvest mouse. The effort involves setting up traps stuffed with cotton batting and baited with birdseed and walnuts, taking measurements and collecting other data on the subjects that are captured. In some studies, the mice are fitted with GPS collars for tracking, or ear tags to help identify them upon recapture. In other studies, the biologists simply clip away fur on the mouse’s flank or neck – another method that helps them determine whether a mouse in a trap has crossed paths with them before.

    Once a mouse’s measurements have been recorded, they are set loose to scamper back into the pickleweed. The data that’s been collected will later be entered into a larger database that will be accessible to researchers from multiple state agencies (CDFW, the Department of Water Resources), federal agencies (US Fish and Wildlife Service, the US Geological Survey), educational research institutions (UC Davis, CSU San Marcos, San Francisco State) and private industry.

    By comparing population fluctuations and other data throughout the range, scientists hope to identify threats and increase their understanding of this rare rodent’s biology and behavior – ultimately helping to better inform future decisions on habitat management, restoration and enhancement efforts.

    Categories:   Wildlife Research

    Arborimus albipes, a CA Critically Imperiled Species of Special Concern

    The white-footed vole is one of the least-studied (and most difficult to catch!) mammals in North America. CDFW Environmental Scientist Dr. Scott Osborn, his collaborator Dr. Tim Bean of Humboldt State University’s Wildlife Department, and a small team of field biologists know that better than anyone – they spent the summer of 2014 setting traps for them in Humboldt and Del Norte counties. Designated a Species of Special Concern by CDFW, only nine records of the species were known in California prior to their study, which was aimed at determining how environmental conditions, such as climate (and future climate change), might affect their distribution.

    Habitat modeling by Bean (based on the previous records) identified areas with high habitat suitability for the white-footed vole. Ten study sites were chosen along the North Coast for the field study, including three where voles had been successfully trapped in the 1990s. Using live traps (both pitfall traps made of two coffee cans taped together and Sherman live traps baited with oats and peanut butter), the team successfully trapped three voles. Notably, one of these was the first recorded capture of a white-footed vole in Del Norte County. All three voles were returned unharmed to their capture site after basic measurements and assessments of food plant preferences were made.

    Although three voles might not seem like a large return on the investment of many hours of field work, the team actually had one of the highest capture rates of white-footed voles of any small mammal study in its geographic range, which includes coastal Oregon and the North Coast of California. Vegetation plots suggest that white-footed voles are tightly associated with stands of red alder trees – so now the biologists know that’s a likely place to find them. The habitat modeling work indicates that suitable habitat may currently exist as far south as Mendocino County, which is outside the known geographic range of the vole. On the other hand, it is possible that this species’ range may contract northward in a warmer and drier future. link opens in new windowOpen the Full Report (PDF)

    bucket sunk into ground under shrubs   A tiny brown vole sits on green leaves in a metal bucket

    Categories:   Wildlife Research