Science Spotlight

rss
  • February 8, 2018

A black-speckled, brown frog rests on a flat granite rock next to a deep blue lake

It does not take a leap of faith to believe that CDFW scientists have gained the upper hand in bolstering the population of yellow-legged frogs in the High Sierra.

Over the past three decades, Sierra Nevada yellow-legged frogs have become imperiled in California due to the two-pronged impact of introduced (non-native) trout and chytridiomycosis, a disease that is affecting amphibians worldwide.

Past introduction of non-native fish, including rainbow trout and golden trout, to benefit sport fishing in the High Sierra took a heavy toll on the species. High-elevation lakes where these frogs once flourished were largely fishless until fish stocking came into vogue. As the years passed, scientists determined that these introduced fish were depopulating the frogs by competing for food sources (primarily insects) and by predation (trout ate both adult frogs and their tadpoles). Chytridiomycosis, which affects many frog species, also impaired the ability of the Sierra Nevada yellow-legged frog’s skin to exchange vital nutrients, which often leads to death.

As a result, Sierra Nevada yellow-legged frogs are believed to have vanished from approximately 92 percent of their historical habitat, and halting and reversing that decline has become an important goal of CDFW, as well as other state and federal entities.

“This is an animal that only lives in the Sierra Nevada,” said Sarah Mussulman, a CDFW senior environmental scientist. “It is one of our unique California species that lives in high-elevation areas, and as an amphibian it serves as an important link between the terrestrial and aquatic ecosystems. This link is especially critical in the low nutrient, granitic basins of the High Sierra, where frogs and tadpoles consume insects and algae and are themselves consumed by a variety of snakes, birds and mammals.”

CDFW recently completed two projects as part of its ongoing efforts to reverse the population decline of Sierra Nevada yellow-legged frogs.

The efforts took place at two sites: Highland Lake and Clyde Lake, located approximately seven miles apart on the Rubicon River in the Desolation Wilderness area of El Dorado County. The projects were completed with federal grant funds earmarked for the recovery of endangered and threatened species (the species is listed as threatened by the State of California and as endangered by the U.S. Fish and Wildlife Service).

Highland Lake, along with its outlet, an unnamed stream, and two small adjacent ponds, supported a small population of rainbow trout when the project began in 2012. Trout abundance had declined in the absence of stocking in recent years but sufficient natural reproduction occurred in the inlet to Highland Lake to sustain the population. CDFW began using gill nets to remove rainbow trout -- the descendants of fish planted in the lake by CDFW from 1935 to 2000 -- in 2012, in partnership with Eldorado National Forest personnel.

During a frog-monitoring survey at Highland Lake in 2016, approximately 800 adult frogs were observed, as compared to a 2003 survey in which only a few tadpoles were observed. Because the frogs have consistently survived in this area despite the presence of chytridiomycosis, scientists believe they have a good chance at persisting in the area for a long time.

“Highland really had a population explosion over the past five years and can be counted as one of the most successful projects of this type ever undertaken,” Mussulman said.

The project at Clyde Lake was smaller and had somewhat different factors.

Golden trout, which frequently have the same negative impacts on Sierra Nevada yellow-legged frogs as rainbow trout, including predation and competition for food sources, were planted by CDFW at Clyde Lake from 1932 through 2000.

Once stocking was halted, the golden trout proved less resilient then the rainbow trout at Highland Lake, due to habitat factors.

“Clyde Lake sits in a north-facing granite bowl bordered by 1,000-foot cliffs, and no flowing streams enter the lake,” explained Mussulman. “There was no spawning habitat, which is likely why golden trout did not persist there after stocking was halted.”

The stream flowing out of Clyde Lake and four nearby ponds did support a small population of golden trout after plants were halted. The fish in the stream and ponds, which are self-sustaining populations, are precluded from moving from the stream into Clyde Lake by a fabricated dam. In 2013, frogs and a few tadpoles were observed in the stream alongside fish, and CDFW began removing the fish from the stream with gill nets to provide additional habitat for the frogs.

Nine years of monitoring data collected by CDFW scientists indicate that the area’s Sierra Nevada yellow-legged frog population, while small, is slowly increasing. Surveyors observed more than 120 frogs in 2016, compared to a low of six observed in 2005. Moreover, in 2016, for the first time, dozens of tadpoles were observed in the newly fish-free lower reaches of the stream.

“It is great to see these populations recovering,” Mussulman said. “It is a great privilege doing this work that helps keep these frogs on the landscape.”

CDFW photos: Highland Lake in the Desolation Wilderness, and a Sierra Nevada yellow-legged frog

Categories: General
  • January 19, 2018

An audio recording device in a semi-clear, plastic container on dark brown ground
The automated recorder model the scientists used. (CDFW photo by Brett Furnas)

Two avian researchers recently completed a groundbreaking study on the effects of climate change, based on the calls of California’s songbirds. By recording the sounds made by eight different songbird species, and tracking the dates they are most vocal and how frequently they sing, the scientists were able to develop a method to measure how the birds are adjusting to climate change.

CDFW Wildlife Ecologist Dr. Brett Furnas and William Jessup University’s Professor Michael McGrann analyzed data from two bird surveys, one done by CDFW and another led by William Jessup University, in the Klamath Mountains and Southern Cascades of northern California. Both studies used automated recorders to monitor bird sounds between 2009 and 2011. The results of their analysis, detailed in a research article entitled Using Occupancy Modeling to Monitor Dates of Peak Vocal Activity for Passerines in California, were published this month in a peer-reviewed, international journal of ornithology, The Condor: Ornithological Applications.

Furnas and McGrann’s study was prompted by the scientists’ concern that climate change could throw bird’s reproduction cycles out of sync with the seasons. Their work, which represents the first comprehensive assessment of songbird occupancy over approximately 15,000 square miles in California, earned high praise from Steve Beissinger, an expert on avian phenology at the University of California, Berkeley.

“Furnas and McGrann provide a textbook example of how to detect differences in the timing of nesting among bird species using information on the peak date of singing derived from surveys and automated recorders,” Beissinger said. “Their results support recent findings of a five-to-twelve day shift forward in the timing of peak singing by California birds in the nearby Sierra Nevada and coastal ranges in response to climate change.”

Because birds’ songs are correlated with their breeding behavior and are easily identifiable to species, the scientists found them to be a useful tool to provide new baseline data for the birds of northern California. Working together, they identified the precise dates of peak vocal activity for eight songbird species: Hutton’s vireo, hermit thrush, dark-eyed junco, Nashville warbler, MacGillivray’s warbler, yellow warbler, western tanager and black-headed grosbeak. In addition to gathering baseline data, Furnas and McGrann developed a method to track advances in the timing of vocal activity in the coming decades.

Male songbirds sing for several reasons -- including to advertise their territory or to find a mate with which to breed. When birds are at their most vocal, they are usually near the height of their breeding season, Furnas explained.

Much like the call of the imperiled “canary in the coal mine,” changes in the frequency or timing of these native birdsongs can serve as barometers of the cumulative impact of climate change.

“When the canary starts singing you know that there is a danger, such as a buildup of dangerous gasses in a mine,” Furnas explained. “When the birds in our study start singing earlier in the season, they are warning us that climate change is starting to disrupt complex ecological cycles that developed slowly over millions of years of evolution.”

One of the most interesting findings of the study so far is a hint in the baseline data that migratory birds may be at greater risk than non-migratory birds. “We found the highest singing activity for migrant birds spanned a shorter number of days than the highest singing activity for non-migratory birds,” Furnas said. “This could be because migratory birds have less flexibility to shift the timing of their breeding cycle. If they are prompted by increasing temperatures to migrate earlier in the year, they may arrive at their breeding grounds to find they don’t have enough insects to eat.

“Migratory birds have to compress a lot of activities into a shorter time period with less margin for error,” Furnas explained. “Think of it like scheduling a short holiday somewhere nice, but when you show up, bad weather cancels out a lot of your itinerary.”

This, in turn, negatively affects the very biodiversity that CDFW is responsible for monitoring.

“If all the species adjusted their ecologies similarly, perhaps that would be OK, but unfortunately, we expect that different insects and birds will react in different ways leading to a mismatch of conditions,” Furnas said.

Both CDFW and William Jessup University plan to continue bird surveys over the long term so that California has the information to support effective management of climate change and other conservation challenges.

Top photo: Singing hermit warbler, one of the species addressed in the study. (CDFW photo by Michael McGrann)

Categories: Wildlife Research
CDFW Science Institute logo

Subscribe

Receive Science Institute news by email.