Science Spotlight

rss
  • August 17, 2017

live abalone in the ocean, covered with marine organisms
three men and one woman on aft deck of small research vessel

California’s coastal waters are home to seven species of abalone, and all but one are endangered or listed as species of special concern. The white abalone in particular has been nearly decimated by overfishing and disease, and scientists can find no evidence that the remaining population is reproducing in the wild. In order to avoid loss of the entire species, CDFW and partner agencies have formed the White Abalone Recovery Consortium, which will employ captive rearing and restoration stocking efforts and extensive public outreach in order to save these animals from extinction. It will be an ongoing, long-term project, but all signs point to future success – already there are more white abalone thriving in the captive breeding program than the entire population living in the wild.

Read more about the efforts to restore California’s white abalone – and learn what you can do to help! – on the CDFW Marine Management News Blog.

Categories: Wildlife Research
  • August 15, 2017

The latest issue of California Fish and Game, CDFW’s scientific journal, is now available online. This century-old quarterly journal contains peer-reviewed scientific literature that explores and advances the conservation and understanding of California’s flora and fauna.

The endangered salt marsh harvest mouse (Reithrodontomys raviventris) graces the cover of California Fish and Game, Volume 103, Issue I. Researchers ventured into the pickleweed to study the tiny mouse, which is endemic to the marshes surrounding the San Francisco Estuary Bay and its tributaries. The mice were fitted with tiny radiotelemetry collars and tracked for three years. Researchers documented some curious behavior in the resulting paper, “Potential evidence of communal nesting, mate guarding, or biparental care.” The accompanying photos provide a fascinating glimpse into an active nest.

Another paper, “Documentation of mountain lion occurrence and reproduction in the Sacramento Valley of California,” explores the potential for mountain lions to exist in fragmented habitats if there is adequate connectivity with larger blocks of suitable habitat and sufficient prey. The study used camera traps to document populations of mountain lions in the Sacramento Valley’s Butte Sink, which is made up of relic riparian habitats interspersed with managed wetlands. The photos show healthy mountain lions moving through habitat that has long been considered unsuitable due to extensive agricultural and urban development.

The article, “Mussels of the Upper Klamath River, Oregon and California,” reports on sampling efforts that expand existing baseline population data on freshwater mussels in the Upper Klamath River. The sampling efforts may ultimately assist with protection, mitigation and enhancement efforts for large bi-valve species.

The final paper provides insights into the benefits deer and elk derive from licking mineral rocks. Researchers took samples of “lick sites” that were used by California black-tail deer (Odocoileus hemionus columbianus) and Roosevelt elk (Cervus canadensis roosevelti) in the Klamath Mountains, Siskiyou County. After performing a detailed analysis of the elemental content of each lick site, the researchers concluded that each lick site offers a different smorgasbord of minerals, and in varying concentrations. The study’s objective is to begin identifying, classifying, and analyzing important mineral lick sites to benefit future ungulate management efforts.

As it has for the past 103 years, California Fish and Game continues to publish high-quality, peer-reviewed science that contributes to the understanding and conservation of California’s wildlife. We look forward to witnessing the contributions of the next installment.

Download the link opens in new windowentire Winter Issue 103 (PDF) in high resolution, or browse individual articles in low resolution.

Categories: California Fish and Game Journal, Wildlife Research
  • June 13, 2017

A buck with a collar walks through brush on a hillside
A young woman attaches a trail camera to a dead tree trunk.

Deer population estimates are an important element of the California Department of Fish and Wildlife’s (CDFW) management decisions regarding the species – including setting quotas for deer-hunting seasons, acquiring land and identifying habitat improvement projects. Historically, CDFW has relied upon helicopter surveys to obtain these population estimates, but such surveys can be problematic. While they are effective in open and largely flat areas, they are less so in tree-laden areas where deer are hidden from sight. They can also be extremely expensive.

Now, thanks to emerging DNA technology, scientists are exploring a less invasive, cost-effective alternative: Analysis of what the deer leave behind.

The use of DNA is not new, of course – CDFW has used hair or tissue samples to extract DNA and identify individual animals for years. But scientists are finding that the painstaking collection and analysis of deer droppings is particularly useful because it allows them to gather the necessary information without physically touching (or stressing) the animals. And that, one might say, is the “bottom line.”

Fecal DNA analysis is being used by wildlife biologists in the North Central Region as part of a six-year region-wide study of mule deer (Odocoileus hemionus) that will provide population estimates in areas where data has previously been lacking. CDFW scientists, in cooperation with UC Davis, will use the deer pellets to take a genetic “fingerprint” designed to help estimate deer populations.

Starting in 2016, a crew began setting transects for pellet collection in the standardized sampling locations (known to hunters as deer zones X6a/b, X7a/b and X8) which are located in Lassen, Plumas, Sierra, Nevada, Placer and Alpine counties. After starting points were randomly selected, habitat information and pictures were collected along with fresh pellets. After the pellets were removed from the area in an initial sweep, scientists revisited the transect once a week for three more weeks to collect new samples. Between July and September of 2016, biologists visited 43 different transects in the summer range and collected and analyzed 458 fresh pellet samples. Staff also captured 20 does and seven bucks and fit them with satellite collars that produced data that helped identify summer home ranges.

CDFW will also use DNA to identify individual deer to help gather buck/doe/fawn ratios. Biologists will then combine the DNA data with home range data from collared deer to calculate the estimated number of deer in the population. This year staff have already completed another 36 plots and collared 18 more deer. Another series of pellet collections is scheduled next year, with a goal of continuing until all 17 counties in the region have been sampled.

Although several DNA projects are occurring across the state, this project is the largest landscape-level study for deer in California. The study is funded through CDFW’s Big Game Account, a dedicated account that provides research and management funds for game species. The University of California will conduct the laboratory work and statistical analysis.

Categories: Wildlife Research
  • May 31, 2017

a tiny, gray rodent in a gloved hand
a tiny, brown rodent in a gloved hand
a tiny brown rodent in a gloved hand

A tiny, endangered mammal is the subject of an extraordinary conservation effort near the communities of Shoshone and Tecopa in Inyo County.

The Amargosa vole is unique to the Mojave Desert, and today, scientists estimate there are only about 500 remaining in the wild. Though the Amargosa vole is rarely seen by humans, biologists recognize that it is a key link in the native food chain. Predators, including raptors and water birds, share the desert marshes where they live, and the extinction of the Amargosa vole would have a ripple effect on these and many other species as well.

For a year, a scientific team consisting of CDFW, UC Davis and US Geological Survey biologists have conducted intensive research into the life cycle of this little vole. The team visited every marsh that potentially could be inhabited by voles – they mapped the marshes, assessed habitat quality, and determined whether or not voles were present. In a subset of larger marshes the team conducted more detailed assessments of water inflow-outflow, soil moisture and vegetation, and captured voles to estimate local population numbers, assess the health of the voles and take samples for disease and genetics studies. In addition to the hands-on study in the desert, they also studied satellite data to track the amount of vegetation and water in the area over a period of time. A grim picture emerged of a habitat range in decline, due in large part to climate change and human modification.

Some of the findings included:

  • Total available habitat for the voles decreased 37 percent between 2012 and 2015.
  • Over decades, global climate change has caused a gradual decrease in water in this region. California’s recent drought has exacerbated the problem.
  • Of the more than 80 marshes that were documented at the beginning of the study, about 60 have degraded and/or dried up. Those that remain are almost all too small to sustain vole populations. Just as pandas eat only bamboo, the Amargosa vole survives solely on bulrush, a plant that grows in desert marshes.
  • Another important finding was that 80 percent of the individual voles found and tracked during the study were adults. This indicates low birth rates and survival rates for juveniles – more barriers to the species’ recovery.

Scientists believe that the network of springs and marshes in the vole’s natural range has been so extensively modified by humans that the vole’s future existence will depend almost entirely on whether humans continue to supply water where and when needed. They found evidence to support this, as an intensive restoration effort at one of the largest marshes showed signs of successfully supporting and sustaining voles.

The report authors identified several specific measures that could be taken to increase vole habitat and improve their chances of survival – including reconfiguring water inflow and outflow, changing elevations and planting vegetation that would enhance existing marshes and/or better connect adjacent marshes.

This study is part of a larger long-term effort to secure a future for the Amargosa vole and the unique marsh ecosystems it depends upon in the Mojave Desert. In late 2014 vole numbers became so low that scientists initiated a captive breeding program at the UC Davis School of Veterinary Medicine to reduce the risk of extinction. Today more than 100 voles are in the captive colony at UC Davis – providing a potential source of animals for release into restored habitats, and an important insurance population to prevent extinction.

Photos by Don Preisler/UC Davis School of Veterinary Medicine

Categories: Wildlife Research
  • May 17, 2017

A fisher climbs a tree trunk at night

Scientists with the California Department of Fish and Wildlife (CDFW) and Oregon State University recently published the results of a population study on fishers (Pekania pennanti) in northern California and southern Oregon. Led by CDFW Wildlife Statistician Dr. Brett Furnas and three coauthors, CDFW Senior Environmental Scientist Richard Callas, CDFW Research Analyst Russ Landers and Dr. Sean Matthews of Oregon State University, the study produced the first-ever robust estimates of density and size of the fisher population in northern California.

“This is the first time we’ve come up with a solid number of fishers, which is a starting point for tracking and monitoring populations,” Furnas said. “One of the most important tools we have used so far to help this species is reintroductions, so now -- with a baseline established and ongoing surveys planned -- we’ll be able to see if the population is really rebounding over time.”

Fishers in northern California and southern Oregon represent the largest remaining population in the Pacific states. The species once ranged from the state of Washington southward through Oregon and California. Currently, fishers occupy only a small portion of their historical range in that region. In California, fishers are found in the northern areas of the state and a small, isolated population occurs in the southern Sierra Nevada Mountains.

CDFW and the U.S. Fish and Wildlife Service have been petitioned on several occasions to list fishers as threatened or endangered under their respective Endangered Species Acts.

In 2016, while considering fishers in the southern Sierra Nevada Mountains of California, the California Fish and Game Commission voted that the petitioned action was warranted in part, choosing to accept the petition in the context of the Southern Sierra Nevada Evolutionarily Significant Unit, and adopted findings to that effect, which were published on May 6, 2016. Although fishers are relatively well-distributed in northern California and in portions of southern Oregon, data from existing surveys and prior studies was used to estimate abundance. This information is critically important to assess the status of fishers and serve as a baseline for conservation efforts.

Furnas and his coauthors used data from camera traps, hierarchical modeling of detections and non-detections of fishers from the cameras, and information about fisher home range size to develop their estimate of population size. They estimated that approximately 3,200 fishers occur within the northern California and southern Oregon study area, with an average density of 5.1 to 8.6 fishers per 100 square kilometers.

Estimating the sizes of wildlife populations is challenging, particularly for species such as the fisher that are difficult to observe and occur over large areas. A final population estimate for the fisher would not have been possible without the cooperation of a variety of federal and tribal agencies, universities and private landowners who shared datasets that were combined to complete the modeling. With these data, Furnas and his coauthors demonstrated that estimating the population size of the fisher at large geographic scales is feasible. They also suggested that the methods used in their research could be used to estimate the abundance of other carnivores, including black bear, gray fox and coyote.

The study was published in the journal Ecosphere. link opens in new windowMore information / view publication

Categories: Wildlife Research
CDFW Science Institute logo

Subscribe

Sign up to receive Science Institute blog posts by email: