Science Spotlight

rss
  • May 18, 2020

close up of iceplant, small green plant with a gardening tool
A coast yellow leptosiphon seedling.

far view of green patch of grass, with a small patch of yello flowers wth houses in the background
Residential development on the San Mateo coast threatens coast yellow leptosiphon’s habitat.

close up of yellow flowers with orange centers with green leaves
Coast yellow leptosiphon is a low growing annual from the Phlox family which typically blooms in April and May.

The world is closing in on coast yellow leptosiphon.

The endangered plant exists in only one known location on earth — an 1,800 square foot plot on Vallemar Bluff in Moss Beach, about 20 miles south of San Francisco. The low-growing annual from the Phlox family features bright yellow flowers with fused petals and typically blooms in April and May.

Erosion caused by rain, waves and other factors is making the bluff that the plant perches on less stable. One study showed that the bluff receded 48 feet between 1908 and 2014. Scientists believe it will continue to recede almost six inches per year moving forward. Climate change could accelerate the erosion process.

“The plant could be almost completely gone in the next 50 years due to bluff-top erosion alone,” said Cherilyn Burton, a senior environmental scientist in CDFW’s Native Plant Program.

Slightly inland from where coast yellow leptosiphon grows is a planned four-unit housing development. The project was approved in March 2019. Although the development project mitigates for direct impacts to the plant, it also eliminates an area that could have been used to help restore the species.

Then there are the indirect impacts caused by urban development. Some aspects of urban design, like installation of storm drainage and landscape irrigation systems, could alter water runoff patterns around the plant’s habitat. The new housing development could also mean increased use of fertilizers, pesticides and other chemicals which through runoff could flow into the plant’s habitat and harm the soil.

“An increase in human activity can cause soil and habitat disturbances, which creates conditions that can be favorable to the spread of non-native plants,” said Burton.

Growing among the coast yellow leptosiphon is freeway iceplant—a fast-growing, invasive species that dominates the landscape and outcompetes other plants for light, nutrients, water, space and other resources. Coast yellow leptosiphon is also threatened by non-native plant species like rough cat’s ear, hare barley and cut leaf plantain. It may also face negative impacts from non-native slugs which can be detrimental to the plant’s seedlings.

“There’s so much going up against this plant. We may have to get creative to save it,” said Burton.

If there’s a bright spot in coast yellow leptosiphon’s story, it may be the lack of opposition in getting it listed as a protected species. In 2016, the California Fish and Game Commission designated coast yellow leptosiphon as a candidate species under the California Endangered Species Act. The plant was officially listed as an endangered species in 2018.

Burton recalls the heavy workload that came with preparing her recommendation to the Commission, and her relief upon hearing the Commission’s vote.

“They voted on it right then – right after I gave my presentation. Sometimes the commissioners have questions. But this time there was silence, and then one of the commissioners said, ‘Well, I think we can all agree that this plant meets the criteria.’”

Options to save coast yellow leptosiphon are limited, but there are a few. Scientists are on the lookout for additional suitable habitat. However, most suitable areas already contain rare and sensitive plants to which scientists must consider potential impacts. If additional suitable habitat is found, there will likely be land use and management issues to be worked out.

“The biggest problem is there’s just not a lot of habitat left in the area, and it’s not clear how far away we could go before the microclimate or other conditions would be too different to be suitable,” said Burton.

Another conservation strategy could include long-term seed storage at a botanical garden or other suitable facility to preserve seeds for the future.

Meanwhile, one landslide at the bluff’s edge could have serious consequences.

“Because of its vulnerability and rarity, losing any portion of the plant’s population could result in extinction,” said Burton.

CDFW Photo. Top Photo:
CDFW scientists Jeb Bjerke, Cherilyn Burton and Bill Condon (retired) at Moss Beach in San Mateo County doing fieldwork to support coast yellow leptosiphon.

###

Media Contact:
Ken Paglia, CDFW Communications, (916) 825-7120

Categories: Science Spotlight
  • October 30, 2019

Image of a healthy steelhead trout being measured and surveyed in 2017.
A healthy steelhead trout surveyed at Pescadero Creek Lagoon Complex in 2017

Dozens of dead steelhead trout are pictured following a turbulent wintertime breach of the lagoon in 2014.
The aftermath of a winter sandbar breach 2014. These nearly annual breaches resulted in large die-offs for the lagoon’s steelhead.

Wide shot of a manual sandbar breach between the lagoon and ocean. Scientists manually breach the lagoon to prevent fish deaths caused by the nearly annual wintertime sandbar breaches.
A manual breach of Pescadero Creek Lagoon Complex. Managed breaches of the lagoon can prevent fish kills caused by turbulent natural breaches. Photo Courtesy of UC Davis School of Veterinary Medicine

There’s a dichotomy in the way Pescadero Creek Lagoon Complex in coastal San Mateo County has both supported—and been detrimental to—steelhead trout for much of the past 25 years.

On one hand, the lagoon complex—the largest tidal marsh between Elkhorn Slough and the San Francisco Bay estuary—boasts high growth rates for Central California Coast Steelhead. The lagoon system allows the species, which is federally listed as endangered, to reach a size that increases their likelihood of surviving at sea. Steelhead also use the system for juvenile rearing and resting during migration.

On the other hand, nearly every year since the mid-1990s, the lagoon faced harsh fall/winter sandbar breaches that filled the system with oxygen-depleted water and spread toxic sediment produced by the breakdown of organic matter like plant material in the absence of oxygen.

These breaches often resulted in large die-offs for the lagoon’s steelhead population. Historically, population estimates have reached as many as 17,000 steelhead rearing into the fall.

“It was a one-two punch where fish faced lack of oxygen and got hit with harsh toxic compounds. It was really unfortunate because the lagoon system works so well to grow steelhead, but we were losing the production every year,” said District Fisheries Biologist Jon Jankovitz.

Efforts to actively manage breaches began in 2012, but were stalled in 2014 and 2015 when the steelhead population was diminished due to drought conditions. In 2015, the California Department of Fish and Wildlife (CDFW) and the National Oceanic Atmospheric Administration (NOAA) partnered with the Department of Parks and Recreation (DPR), which owns much of the land associated with the complex, in adopting a monitoring and management plan.

In 2016, a significant fish kill caused by a turbulent sandbar breach prompted further action. CDFW, NOAA and DPR resumed active management to improve water conditions and prevent the deadly breaches.

The restoration team installed a sandbar dam at a major channel to slow the release of oxygen-depleted water and sediment into the system. Staff also preemptively manually breached the lagoon mouth on occasions when they anticipated a harmful natural breach.

Jankovitz conducts weekly water quality monitoring and twice-monthly dry-season fish sampling to inform management decisions. He produces an annual report on the health of the steelhead population and a summary of seasonal water quality transitions.

So how has active management faired? There hasn’t been a significant fish kill since 2016.

“We’ve saved the steelhead population for the last couple of years. We’re fortunate for the success we’ve had so far,” said Jankovitz.

Another mark of success has been the documented presence this year of sexually mature holdovers, meaning steelhead that were reared in the lagoon for two seasons even though they were large enough to smolt (i.e. migrate to sea).

“This obviously couldn’t happen if there was a fish kill the year prior. These holdovers represent a life history strategy that may fill in gaps during down reproductive years or periods of poor ocean conditions,” said Jankovitz.

There’s a long-term restoration plan in the works which would likely involve structural changes, such as relocating culverts and breaching levees, to alter the dynamics of how much tide flows in and out of the system. The plan includes a sediment removal project that was implemented in 2019 to increase fish passage.

Ultimately, CDFW and DPR would like to keep the system thriving without active management. “We don’t love breaching the lagoon manually because it can be stressful for fish and other aquatic species,” Jankovitz said.

Meanwhile, fostering an environment in Pescadero Creek Lagoon Complex that supports a large population of fast-growing steelhead continues to be top priority.

“Aside from being a native California species with a long history of recreational and angler use, steelhead are a great biological indicator of the health of streams and lagoon systems. The ecology of these systems would likely fall apart without them,” Jankovitz said.

Photos courtesy of CDFW District Fisheries Biologist Jon Jankovitz and the Bodega Marine Lab at University of California, Davis. Top Photo: District Fisheries Biologist Jon Jankovitz with a healthy Pescadero juvenile steelhead.

Media Contact:
Ken Paglia, CDFW Communications, (916) 322-8958

Categories: General