Science Spotlight

rss
  • September 26, 2018

Close up of abalone underwater releasing eggs
A newly collected female wild white abalone releases eggs during the captive breeding program’s annual spawning event. This was the first new genetic input in the captive population for 14 years. Photo taken for CDFW by M. Ready

At nearly 130 feet underwater, CDFW abalone researcher Dr. Laura Rogers-Bennett didn’t have much time. Her dive computer told her it was time to ascend, which meant that she would have to stop searching for the endangered white abalone hiding in the waving fields of red and gold gorgonians.

Reluctantly, she watched the beautiful scene drop away below her as she kicked slowly upwards. She moved through the towering elk kelp towards her safety stop, a precious white abalone kept solidly in her grasp. On that trip, back in 2004, Rogers-Bennett and Ian Taniguchi, another CDFW abalone expert, and a team of other scientist divers collected 21 critically endangered white abalone off the deep reefs in the Channel Islands. This collection trip was conducted in an effort to save the species before they disappeared from the wild, and to create a captive breeding program that could bring this important and iconic species back from the brink of extinction.

Fourteen years later, the white abalone Captive Breeding Program is a thriving reality, thanks to the vision and hard work of a committed team of scientists from the White Abalone Consortium (WARC). Those 21 animals that Rogers-Bennett helped to collect in the Channel Islands have now produced thousands of descendants in captivity. The program is so successful, in fact, that it is now producing more animals than it has space to raise. Now, the next step is for WARC and CDFW scientists to perfect methods to release these captive bred animals back into the wild.

A huge challenge for CDFW and the WARC is to ensure that the captive-bred animals stand the best chance for survival in the wild – and one of the greatest obstacles could lie within the abalones’ own DNA. Because the entire captive-bred population stems from only 21 animals, the genetic diversity of the captive program is limited. One of the main factors that influence how a population of animals will react to stress is how genetically diverse the individuals are from one another. 

In the past, wild, healthy white abalone populations had large numbers of individuals to reproduce with. This created a vast number of family lineages and resulted in an expansive genetic pool. A population with diverse genetic parentage strengthens the overall population by ensuring that there will be a diversity of responses among the individuals. For example, some stresses, like disease or environmental change, may affect certain individuals while others maybe be more genetically suited to defend against those threats. If the population faces a major disease outbreak, some individuals will likely survive, enabling the populations to restore itself over time. But if a population lacks this genetic diversity due to limited parentage, the entire population could succumb to the disease.

The solution is to introduce new animals into the captive breeding population in order to diversify the gene pool and create animals vigorous enough to thrive in the wild. Yet that’s a trickier proposition than one might think, because of their endangered status. Even when evidence strongly suggests that there has been zero reproduction, researchers follow very strict guidelines so as not to disrupt potentially viable populations. For this reason, WARC and CDFW spent years monitoring reproduction of wild white abalone populations, until they were absolutely certain that the animals were not reproducing in the wild.

In 2017, the WARC was given a permit by NOAA to collect wild animals for the captive breeding program. The following May, when conditions were right, Rogers-Bennett and the WARC team of scientists returned to the Channel Islands on the first white abalone collecting trip in more than a decade. WARC divers gathered in the spring sun on the deck of the research vessel Garibaldi to discuss the day’s dives, which would be to nearly 120 feet. Everyone was focused, but a cautious optimism hung in the air. Encountering the incredibly rare white abalone was a long shot, but two individuals had been spotted in the area within the last year.

Alongside her team, Rogers-Bennett descended through the water column, watching as the ocean floor came into focus below her. As she got closer, she could just make out the familiar shape of an abalone. She assumed it was another, more common species of abalone, but as she got lower she recognized the unmistakable markings of a white abalone. She had landed directly on top of one!

Since the beginning of 2017, 10 animals have been collected by WARC scientists and transported to their facility in Bodega Bay. This is the first time in 14 years that scientists will be able to add new genetics to the captive breeding program. Dr. Kristin Aquilino, Director of the UC Davis Captive Breeding Program for the WARC, was able to include a newly collected female white abalone into the 2017 annual captive breeding spawn. It takes time before wild animals are able to integrate into the program, but researchers hope that the newly collected animals will participate in the next white abalone broodstock spawn.

With the new genetics from the wild abalone being introduced to the captive breeding program, and restorative stocking studies underway, the future for this species is looking brighter all the time. Through the dedication of a brilliant team of scientists, policymakers and an engaged public, the WARC is hopeful that one day the white abalone will resume its ecological role in the deep reef ecosystems of the beautiful Southern California kelp forests.

Please stay tuned for more updates about the white abalone and our other abalone restoration work in California!

CDFW Photos. Top Photo: CDFW diver Ian Tanigucci takes notes before collecting a wild white abalone (in the foreground) in 2017. This is one of 10 white abalone collected from the wild to be integrated into the captive breeding program at Bodega Marine Lab. These newly collected animals will provide a new and much needed source of genetics for the captive bred white abalone populations.

Categories: Wildlife Research
  • May 31, 2018

Diver underwater in black diving suit holding underwater writing tablet underwater in kelp forest
WARC diver Shelby Kawana assesses habitat at one of the CDFW red abalone stocking sites located off the coast of southern California.

Diver underwater in black diving suit holding a large grid made from PVC pipes and wire in kelp forest
WARC diver Armand Barilotti assesses habitat at one of the CDFW red abalone stocking sites located off the coast of southern California.

Curled up octopus hiding underwater
Octopus are a top abalone predator and therefor pose a threat to newly stocked juvenile red abalone populations. Researchers catch and relocate octopus when they are found hiding in crevasses near stocking sites.

Abalone attached to a rock
A rediscovered stocked red abalone was found clinging to the underside of a rock during a one year post stocking survey.

Harvesting abalone for dinner used to be as fundamental to a Southern California lifestyle as fish tacos and flip-flops. But by 1998, a combination of overfishing and disease led to the closure of all abalone fishery south of San Francisco. By 2001, the white abalone was listed as an endangered species because populations continued to decline despite protection from fishing pressure. Population numbers are so low today that the only option for recovery is believed to be through a robust captive breeding and stocking program.

Scientists from the California Department of Fish and Wildlife (CDFW) White Abalone Recovery Project and their partners in the White Abalone Recovery Consortium (WARC) are working to bring back the iconic white abalone from the brink of extinction. Since 2016, CDFW and partners have been working to actively restore abalone populations through stocking of young captive-reared abalone. Successful stocking is the critical next step to reestablishing self-sustaining wild populations of this culturally and ecologically important mollusk. The early stocking studies have aimed to perfect the methods that will be used to restore wild white abalone populations in the future by using red abalone as a test case. Red abalone, a sister species of the white abalone, lives in the same deep kelp forest habitats, and their populations in Southern California have also been very slow to recover.

Every few months, scientific divers on board the CDFW research vessel Garibaldi wrestle into thick neoprene wetsuits and load heavy steel tanks onto their backs in order to check on the stocked abalone. As the divers descend deeper into the kelp forest, they enter the world of the white abalone. Sunlight streams through the towering giant kelp, briefly illuminating the shiny sides of the small fish taking cover in the kelp blades. Lobsters and octopuses are tucked into the crevices of rocks, and abalone and urchins shelter in the shadows. Many of those abalone are adorned with small brightly-colored numbered tags that identify them as the new additions to the neighborhood. After a few months in the wild, the stocked abalone can show an extensive amount of growth which speaks to the quality and abundance of resources in their new habitat.

Since restoration stocking began in 2016, the partnership has stocked close to 10,000 red abalone off the coast of southern California. These studies are helping scientists understand how stocked abalone interact with their new environment in the wild. Researchers are increasing the effectiveness of future stocking work by teasing out the risk factors that abalone face in their new environment. For multiple years after releasing the abalone, divers track the number and identity of each abalone, and assess the ecosystem health and predator abundances at each site. The divers also collect any abalone shells encountered to determine the effects of different predators at each site through time.

Octopuses, lobsters, sea stars and fish are all major predators of the young abalone, and care is taken to introduce the abalone during times of the year when the predators will be least abundant. All of the data from these early studies are aimed at lessening the risks that stocked abalone face, and to improve long-term growth and survival.

The WARC understands that abalone are at the heart of coastal California’s identity and culture. The return of red and white abalone to the wild marks the beginning of a new chapter in the love story between California and this amazing mollusk. This is true for the ecosystems that rely on them as well as for the humans that cherish them. Please stay tuned for updates on the lessons learned from these studies, and plans for upcoming white abalone stocking work!

For more information, please visit the following pages:

CDFW Photos. Top Photo: Newly tagged red abalone that are ready to be released into the ocean during a WARC stocking study in 2016.

Categories: General