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Abstract
Aim: Maintaining	biodiversity	 in	the	face	of	 land	use	and	climate	change	is	a	para‐
mount	 challenge,	 particularly	 when	 distributions	 of	 many	 species	 remain	 incom‐
pletely	known.	Emerging	technologies	help	address	this	data	deficiency	by	facilitating	
the	collection	of	spatially	explicit	data	for	multiple	species	from	multiple	taxa.	In	this	
study,	we	combine	acoustic	and	visual	 sensor	 surveys	 to	 inform	conservation	and	
land	use	planning	in	an	area	experiencing	rapid	climate	and	land	use	change.
Location: Mojave	Desert,	California,	United	States.
Methods: We	deployed	camera	traps	and	acoustic	detectors	at	210	sites	between	
March	and	July	2016.	We	identified	photographic	detections	of	mammals	and	acous‐
tic	 recordings	 of	 songbirds	 to	 the	 species	 level	 and	 used	multispecies	 occupancy	
models	to	estimate	and	evaluate	species'	occupancy	probabilities.	We	then	extrapo‐
lated	model	results	to	the	region	and	forecasted	how	projected	climate	and	land	use	
changes	might	affect	species'	occupancy	probabilities	in	50	years.	Lastly,	we	identi‐
fied	areas	with	high	conservation	value	(i.e.,	high	relative	species	richness)	now	and	in	
50	years,	and	related	the	distributions	of	these	areas	to	land	use	designations.
Results: We	detected	15	mammal	and	68	songbird	species.	At	the	community	level,	
occupancy	decreased	with	increasing	temperatures	and	distances	to	woodlands.	We	
forecasted	that	occupancy	probabilities	and	areas	with	high	conservation	value	would	
decline	in	50	years	due	to	projected	increases	in	maximum	temperatures	and	identified	
that	up	to	43%,	24%	and	27%	of	land	designated	for	renewable	energy	development,	
recreation	and	military	activities,	respectively,	encompassed	these	high	value	areas.
Main conclusions: Cooler	areas	close	to	woodlands	and	water	are	of	high	conserva‐
tion	value	to	mammals	and	songbirds	in	the	Mojave.	These	areas	will	become	increas‐
ingly	 limited	with	changing	climate,	however,	making	 their	protection	 from	human	
disturbance	imperative.	We	encourage	continued	use	of	visual	and	acoustic	sensors	
across	large	spatial,	temporal	and	taxonomic	scales	as	tools	to	inform	land	use	and	
wildlife	conservation.

K E Y W O R D S

acoustic	recorder,	camera	trap,	climate	change,	land	use	planning,	Mojave	Desert,	
multispecies	occupancy	model,	species	richness

www.wileyonlinelibrary.com/journal/ddi
mailto:
https://orcid.org/0000-0002-6736-7152
http://creativecommons.org/licenses/by/4.0/
mailto:lindsey.rich@wildlife.ca.gov


2  |     RICH et al.

1  | INTRODUC TION

Maintaining	the	world's	tremendous	diversity	of	 life	 is	a	paramount	
and	daunting	challenge	amid	the	land	use	and	extractive	activities	of	
7.4	billion	people	and	a	rapidly	changing	climate	(Bellard,	Bertelsmeier,	
Leadley,	Thuiller,	&	Courchamp,	2012;	Jetz,	Wilcove,	&	Dobson,	2007;	
Walther	et	al.,	2002).	Human	actions,	including	the	conversion,	deg‐
radation	 and	 fragmentation	 of	 natural	 habitats,	 and	 the	 direct	 per‐
secution	 of	 wild	 vertebrates	 (e.g.,	 retaliatory	 killings,	 subsistence	
hunting,	or	poaching)	are	placing	unprecedented	pressures	on	biodi‐
versity	globally	(Jetz	et	al.,	2007;	Newbold	et	al.,	2015).	Concurrently,	
human‐induced	climate	change	is	increasing	the	quantity	and	severity	
of	environmental	stressors	such	as	drought,	fire,	or	disease	and	insect	
outbreaks,	and	driving	shifts	in	species'	geographic	ranges	and	com‐
munity	structures	(Bentz	et	al.,	2010;	Dale	et	al.,	2001;	IPCC,	2007;	
Seager	et	al.,	2007;	Walther	et	al.,	2002).	By	many	forecasts,	without	
active	management	efforts,	the	effects	of	future	land	use	and	climate	
change	on	biodiversity	will	be	immense	(Barnosky	et	al.,	2011).

Fine‐grain,	species‐specific	data	collected	across	large	spatial	and	
temporal	scales	is	vital	to	quantifying	the	pace	of	biodiversity	change,	
to	 identifying	 large‐scale	ecological	stressors	and	to	designing	 land	
use	 and	 conservation	 plans	 that	 effectively	 minimize	 negative	 im‐
pacts	 on	 vertebrate	 populations,	 (Bellard	 et	 al.,	 2012;	 Cameron,	
Cohen,	 &	 Morrison,	 2012;	 Jetz,	 McPherson,	 &	 Guralnick,	 2012;	
Pereira	et	al.,	2013;	Theobald	et	al.,	2015).	Further,	without	biodiver‐
sity	data	it	is	challenging	for	wildlife	managers	and	land	use	planners	
to	make	proactive	versus	reactive	decisions.	Proactive	decisions	are	
those	that	 if	 implemented,	and	 if	projected	ecosystem	changes	are	
accurate,	will	benefit	biodiversity	in	the	future	(e.g.,	conserving	areas	
projected	 to	 be	 important	movement	 corridors	 or	 climate	 refugia),	
whereas	reactive	decisions	involve	responding	to	impacts	as	or	after	
they	occur	(Palmer	et	al.,	2008).	Despite	the	clear	importance	of	em‐
pirical	data	for	biodiversity	conservation,	the	infrastructure	required	
to	collect	and	analyse	comprehensive	monitoring	data	is	often	lacking	
(Ahumada,	Hurtado,	&	Lizcano,	2013;	Schmeller	et	al.,	2015).

New,	emerging	 technologies	are	helping	 to	address	 these	data	
deficiencies	by	 facilitating	 the	collection	of	 spatially	explicit,	 land‐
scape‐level	data	 for	multiple	species	 from	multiple	 taxa.	Arrays	of	
fixed	 acoustic	 sensors,	 for	 example,	 can	 record	 bird,	 bat,	 anuran	
and	insect	taxa	that	emit	species‐specific	sounds	(Aide	et	al.,	2013;	
Blumstein	et	 al.,	 2011).	Visual	 sensors	 (i.e.,	 camera	 traps),	 alterna‐
tively,	use	motion	and	heat‐sensing	infrared	technology	to	provide	
photographic	 detections	 for	 a	 diversity	 of	 mammal,	 bird	 and	 fish	
species	(Rich	et	al.,	2017;	Steenweg	et	al.,	2017).	Both	sensor	types	
have	greatly	improved	inferences	on	the	population	dynamics	of	rare	
or	elusive	species,	and	have	enabled	the	quantification	and	evalua‐
tion	of	species	distributions,	community	richness,	temporal	activity	
patterns,	population	trends	and	inter‐	and	intraspecific	interactions	
(Aide	et	al.,	2013;	Blumstein	et	al.,	2011;	Rich	et	al.,	2017;	Steenweg	
et	al.,	2017).

In	 this	 study,	we	explore	 the	utility	of	combining	acoustic	and	
visual	sensor	surveys	to	 inform	land	use	planning	and	biodiversity	
management	 in	 a	 region	 experiencing	 rapid	 change,	 the	 Mojave	

Desert	of	California.	The	Mojave	Desert	is	a	32.1	million	acre	area	
that	falls	within	the	North	American	desert	complex,	one	of	the	five	
most	biologically	diverse	wilderness	areas	in	the	world	(Mittermeier	
et	al.,	2002).	In	addition	to	harbouring	rich	biodiversity,	the	Mojave	
Desert	 provides	 critical	 habitat	 for	 many	 threatened	 and	 endan‐
gered	 species	 (Flather,	 Knowles,	 &	 Kendall,	 1998;	 Randall	 et	 al.,	
2010).	 Similar	 to	 many	 other	 regions	 around	 the	 world,	 climate	
change	and	a	multitude	of	human‐mediated	land	use	pressures	are	
threatening	the	Mojave	Desert's	diverse	fauna	(Gibson,	Wilman,	&	
Laurance,	2017;	LaDochy,	Medina,	&	Patzert,	2007;	Leu,	Hanser,	&	
Knick,	2008;	Lovich	&	Bainbridge,	1999;	Seager	et	al.,	2007).	Mean	
annual	temperatures	have	increased	by	over	2°C	in	the	last	50	years	
while	 precipitation	 has	 decreased,	 causing	 the	 region	 to	 become	
increasingly	hot	and	arid	(LaDochy	et	al.,	2007;	Rapacciuolo	et	al.,	
2014;	Seager	et	al.,	2007).	Land	use	changes	triggered	by	urbaniza‐
tion,	military	activities	and	recreation	(e.g.,	off‐road	vehicle	use),	al‐
ternatively,	have	resulted	in	widespread	habitat	loss,	fragmentation	
and	degradation	in	this	region	(Leu	et	al.,	2008;	Lovich	&	Bainbridge,	
1999).	 Further,	 the	 Mojave	 Desert	 is	 experiencing	 development	
pressures	from	the	renewable	energy	sector	as	California	 increas‐
ingly	 invests	 in	wind	and	solar	energy	production	 (Cameron	et	al.,	
2012;	Gibson	et	al.,	2017;	Hernandez,	Hoffacker,	Murphy‐Mariscal,	
Wu,	&	Allen,	2015).	An	understanding	of	species	distributions	and	
habitat	requirements	is	needed	to	minimize	the	potentially	adverse	
impacts	 of	 climate	 and	 land	 use	 pressures	 on	 biodiversity	 in	 this	
region.

We	 focused	 our	 survey	 approach	 in	 the	 Mojave	 Desert	 on	
songbird	 and	 mammal	 communities.	 The	 specific	 objectives	 of	
our	study	were	threefold.	Our	first	objective	was	to	use	data	from	
acoustic	 and	 visual	 sensor	 surveys	 to	 model	 current	 occupancy	
probabilities	for	terrestrial	mammal	species	weighing	>0.5	kg	and	
songbird	 species	 in	 the	 Mojave	 Desert.	 We	 expected	 that	 the	
spatial	distributions	of	vertebrates	would	be	most	strongly	influ‐
enced	by	topography,	water	availability,	woodland	habitat,	urban	
development	 and	 climate	 (Epps,	McCullough,	Wehausen,	 Bleich,	
&	Rechel,	2004;	Jetz	et	al.,	2007;	Ordeñana	et	al.,	2010;	Walther	
et	al.,	2002).	Our	second	objective	was	 to	use	occupancy	model	
outputs	to	identify	areas	with	high	conservation	value	for	mammal	
and	songbird	communities,	and	to	relate	the	distributions	of	these	
areas	 to	 five	 major	 land	 designations	 (i.e.,	 areas	 designated	 for	
federal	protection,	conservation	planning,	recreation,	military	and	
energy	development).	Our	final	objective	was	to	demonstrate	how	
modelled	occupancies	and	projected	climate	and	land	use	changes	
can	be	integrated	to	predict	species'	occupancy	probabilities	and	
the	availability/distribution	of	areas	with	high	conservation	value	
in	50	years.	Ideally,	through	these	steps,	we	can	provide	a	better	
understanding	of	mammal	and	songbird	populations	in	the	Mojave	
Desert	 that	can	 inform	proactive	 land	use	and	biodiversity	man‐
agement	strategies	and	the	prioritization	of	conservation	actions.	
Furthermore,	as	this	is	among	the	first	studies	to	integrate	acous‐
tic	 and	 visual	 sensor	 data,	we	 hope	 this	work	 provides	 a	 timely	
example	of	how	emerging	technologies	can	facilitate	multispecies	
and	multi‐taxa	data	collection.
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2  | METHODS

2.1 | Study area and design

The	Mojave	Desert	ecoregion	of	California,	as	defined	by	the	U.S.	
Department	 of	 Agriculture	 (USDA,	 2016),	 is	 a	 66,830	 km2 area 
with	elevations	ranging	from	−83	to	2,414	m	(x̄	=	796	m).	The	study	
area	 encompasses	 over	 140	 different	 vegetation	 communities	
with	 the	 predominant	 National	 Vegetation	 Classification	 (NVC)	
macrogroup	being	Mojave‐Sonoran	semi‐desert	scrub	(e.g.,	Larrea 
tridentata and Ambrosia dumosa;	Menke,	Reyes,	Glass,	Johnson,	&	
Reyes,	 2013;	 USNVC,	 2016).	 Other	 vegetation	 macrogroups	 in‐
cluded,	 for	 example,	Great	Basin‐intermountain	dry	 shrub/grass‐
land	 (e.g.,	Yucca brevifolia),	 desert	 alkali‐saline	marsh,	 playa,	 and	
shrubland	(e.g.,	Atriplex spinifera),	warm	desert	xeric‐riparian	scrub	
(e.g.,	 Senegalia greggii),	 and	 warm	 semi‐desert	 cliff,	 scree,	 and	
rock	vegetation	(e.g.,	Atriplex hymenelytra).	The	eastern	border	of	
our	study	area	was	the	California	state	line,	but	we	note	that	the	
Mojave	Desert	 extends	 into	Nevada,	Arizona	 and	 the	 southwest	
corner	of	Utah.

We	 surveyed	 210	 sites	 across	 the	 California	 portion	 of	 the	
Mojave	Desert	region	between	March	and	July	2016	(Figure	1).	We	
identified	survey	locations	by	first	selecting	a	spatially	balanced	ran‐
dom	sample	of	hexagons,	stratified	by	vegetative	community,	from	
the	 USDA	 Forest	 Inventory	 and	 Analysis	 program's	 hexagon	 grid	
(hexagon	radius	is	~2.6	km).	We	then	randomly	selected	1–3	survey	
locations	within	each	hexagon,	which	were	spaced	by	1–2	km	and	
stratified	 by	 vegetative	 community.	 Survey	 sites	 covered	 a	 broad	
range	 of	 elevations,	 ranging	 from	−75	m	 in	Death	Valley	National	
Park	to	1,630	m	in	the	Mojave	National	Preserve	(Appendix	S1).

2.2 | Camera trap and acoustic recorder surveys

At	each	survey	location,	we	deployed	a	PC900	camera	trap	(Reconyx)	
and	 a	 SM3‐BAT	 bioacoustic	 recorder	 with	 microphone	 (Wildlife	
Acoustics,	Inc.,	hereafter	termed	ARU).	We	cable‐locked	cameras	and	
ARUs	to	securely	placed	T‐posts	1‐m	and	2‐m	above	the	ground,	re‐
spectively;	T‐posts	were	separated	by	at	least	30	m.	If	T‐post	mounting	
was	not	possible,	we	secured	devices	to	a	tree	or	other	rigid	vegetation.

Cameras	were	deployed	for	an	average	of	34	days	(SD	=	7.6)	and	
baited	during	their	initial	deployment	in	an	attempt	to	maximize	de‐
tection	 probabilities	 (Karanth,	Nichols,	 2011).	Our	 goal	was	 to	 in‐
crease	the	probability	of	photographing	mammals	within	the	vicinity	
of	the	camera	rather	than	attracting	mammals	from	long	distances.	
Thus,	we	used	baits	that	were	detectable	at	short	distances	includ‐
ing	a	250	g	salt	lick,	100	ml	of	rolled	oat–peanut	butter	mixture	and	
150	g	of	fishy	cat	food.	We	programmed	cameras	to	take	three	pho‐
tographs	at	each	trigger	event,	with	a	delay	of	one	second	between	
trigger	 events.	 After	 the	 field	 season,	 we	 identified	 photographic	
detections	to	the	species	level,	omitting	photographs	when	this	was	
not	possible	(e.g.,	blurry	images).

We	programmed	ARUs	to	record	three,	5‐min	sessions	on	three	
consecutive	days	during	the	survey	period.	The	first	session	was	at	
30	min	before	sunrise,	the	second	at	sunrise	and	the	third	at	30	min	
after	sunrise	(Furnas	&	Callas,	2015).	We	had	an	expert	in	aural	iden‐
tification	of	California	desert	birds	review	each	5‐min	recording	and	
identify	bird	species	by	song	or	call.	To	aid	in	bird	identification,	the	
expert	examined	spectrograms	in	Raven PRo	software	(v.	1.5;	Cornell	
Lab	of	Ornithology	Bioacoustics	Research	Program).	We	omitted	re‐
cordings	that	could	not	be	identified	to	the	species	level	and,	in	an	

F I G U R E  1  Survey	site	locations	in	the	
Mojave	Desert	of	California,	2016,	and	
land	designations	across	the	region
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effort	to	ensure	species	were	similar	ecologically,	we	restricted	our	
analysis	to	songbirds	(i.e.,	species	in	the	order	Passeriformes;	Barker,	
Cibois,	Schikler,	Feinstein,	&	Cracraft,	2004).	The	specialist	also	clas‐
sified	the	level	of	background	noise	(e.g.,	wind,	rain,	vehicle	and	air	
traffic)	during	each	recording	using	an	ordinal	variable	ranging	from	
zero,	indicating	no	noise,	to	four,	indicating	loud	noise.

2.3 | Spatial covariates of occupancy and detection

We	expected	 that	 slope,	water	 availability,	habitat	heterogeneity,	
urban	 development	 and	 climate	 would	 influence	 wildlife	 distri‐
butions	 across	 the	Mojave	Desert.	We	used	 the	 30‐m	 resolution	
National	Elevation	Dataset	 (USGS,	2016)	 to	 calculate	 and	extract	
slope	values	for	each	sampling	site	location	in	aRcMaP	10.4.1	(ESRI).	
We	used	Global	Surface	Water	Explorer	(Pekel,	Cottam,	Gorelick,	&	
Belward,	2016)	to	identify	permanent	and	seasonal	water	sources,	
United	 States	 Geological	 Survey	 (USGS)	 land	 use	 data	 (Sleeter,	
Wilson,	Sharygin,	&	Sherba,	2017)	 to	 identify	urban	development	
and	California	Department	of	Fish	and	Wildlife	(CDFW)	vegetation	
data	(CDFW,	2017)	to	identify	the	NVC	macrogroup	“intermountain	
pinyon‐juniper	woodlands.”	We	then	measured	the	distances	from	
each	site	to	the	nearest	water	source,	developed	area	and	pinyon‐
juniper	woodland	 in	aRcMaP.	We	chose	 to	estimate	 the	distances	
to	 these	 environmental	 features,	 as	 compared	 to	 their	 coverage	
within	a	certain	area	surrounding	the	site	(e.g.,	a	1‐	or	5‐km2	buffer),	
because	we	were	examining	a	broad	range	of	species	with	varying	
area	requirements	and	our	multispecies	models	required	covariate	
values	to	be	consistent	across	all	species.	We	 included	pinyon‐ju‐
niper	woodlands,	 specifically,	 because	 they	 provide	 an	 important	
form	 of	 vertical	 habitat	 heterogeneity	 in	 the	Mojave	Desert,	 but	
we	note	that	other	vegetation	types	and	communities	(e.g.,	Joshua	
trees—Y. brevifolia)	were	also	 likely	 important.	Lastly,	 to	represent	
climate,	we	used	30‐year	(1981–2010),	270‐m	resolution	summary	
data	from	the	2014	California	Basin	Characterization	Model	(BCM;	
California	 Landscape	 Conservation	 Cooperative,	 2014).	We	 used	
this	 dataset	 to	 ensure	 the	 temporal	 and	 spatial	 resolution	 of	 our	
current	 climate	 values	would	 be	 consistent	with	 that	 of	 our	 pro‐
jected	climate	values.	We	extracted	 site‐specific	 values	 for	mean	
annual	precipitation	(cm),	maximum	monthly	temperature	(°C)	and	
climatic	water	deficit,	which	was	a	function	of	potential	and	actual	
evapotranspiration	(Flint,	Flint,	Thorne,	&	Boynton,	2013).

The	phenology	of	birds'	 vocal	behaviours	can	change	over	 the	
course	of	a	breeding	season	 (Furnas	&	McGrann,	2018)	and	mam‐
mals'	movement	and	activity	patterns	may	 fluctuate	based	on	en‐
vironmental	 factors	 and	 human	 activity	 (Ordiz,	 Sæbø,	 Kindberg,	
Swenson,	&	Støen,	2017).	Thus,	we	expected	that	a	species'	prob‐
ability	 of	 being	 detected	may	 vary	 based	 on	 human	 impact,	 time	
of	 year	 and	 temperature.	 To	quantify	 human	 impact	 at	 each	 sam‐
pling	 site,	 we	 extracted	 values	 from	 the	 USGS	 human	 footprint	
model	 (USGS,	 2016b),	 and	 to	 represent	 time	of	 year,	we	 included	
mean	Julian	day	and	its	quadratic	term.	To	represent	temperature,	
we	used	4‐km	resolution	daily	temperature	data	from	PRISM	(Prism	
Climate	Group	2018).	Daily	temperature	and	Julian	day	were	highly	

correlated	(r	=	0.77).	Thus	we	only	retained	Julian	day	for	our	anal‐
yses	because	 Julian	day	had	 a	 stronger	univariate	 effect	 size,	 and	
we	did	not	want	to	confound	differences	in	phenology	with	differ‐
ences	in	occupancy	(Strebel,	Kéry,	Schaub,	&	Schmid,	2014).	Lastly,	
for	songbirds,	we	also	included	mean	background	noise,	which	can	
impede	the	audibility	and	identification	of	bird	species.

2.4 | Multispecies occupancy models

We	used	multispecies	hierarchical	occupancy	models	to	estimate	the	
probability	species	i	occurred	within	the	area	sampled	by	a	camera	trap	
or	ARU	during	our	survey	period	(i.e.,	occurrence;	Dorazio	&	Royle,	
2005;	 Iknayan,	 Tingley,	 Furnas,	 &	 Beissinger,	 2014).	 Multispecies	
models	 link	 species‐specific	 detection	 and	 occupancy	 using	 com‐
munity‐level	 hyper‐parameters	 which	 specify	 the	 mean	 response	
and	variation	 among	 species	within	 the	 community	 to	 a	 respective	
covariate	(Kéry	&	Royle,	2008;	Zipkin,	Royle,	Dawson,	&	Bates,	2010).	
Linking	occurrence	models	 for	 individual	species	within	a	hierarchi‐
cal	model	results	in	a	more	efficient	use	of	data,	increases	precision	
in	estimates	of	occupancy	and	allows	for	assessments	of	ecological	
variables	at	both	the	species	level	and	community	level	(Kéry	&	Royle,	
2008;	 Iknayan	et	al.,	2014;	Zipkin	DeWan,	&	Andrew	Royle,	2009).	
Further,	the	models	produce	estimates	of	species	richness	(i.e.,	num‐
ber	of	species	in	the	community	and	at	each	sampling	location).

Occupancy	 models	 distinguish	 the	 true	 absence	 of	 a	 species	
from	 the	 non‐detection	 of	 a	 species	 (i.e.,	 species	 present	 but	 not	
photographed/recorded)	 using	 spatially	 or	 temporally	 replicated	
survey	data.	For	each	sampling	location,	we	treated	each	24‐hr	cam‐
era	trapping	period	(n̄	=	34)	and	each	5‐min	acoustic	recording	(n	=	9)	
as	a	repeat	survey	at	that	particular	site.	For	our	camera	trap	model	
and	for	our	ARU	model,	we	specified	the	occurrence	probability	(ψ)	
for	species	i	at	site	j	as:

We	did	not	include	annual	precipitation	and	climatic	water	deficit	
in	our	 final	model	because	they	were	highly	correlated	with	maxi‐
mum	monthly	temperature	(r	>	|0.8|)—the	climatic	variable	that	had	
the	strongest	influence	on	mammal	and	songbird	occupancy	in	pre‐
liminary	 analyses.	We	 also	 included	 human	 impact	 and	 Julian	 day	
and	 its	quadratic	 term	as	 covariates	 for	detection	 in	both	models,	
with	the	addition	of	background	noise	in	the	ARU	model.	We	linked	
species‐specific	 models	 using	 a	 mixed	 modelling	 approach	 where	
we	assumed	species‐specific	parameters	were	 random	effects	de‐
rived	 from	a	normally	distributed,	 community‐level	hyper‐parame‐
ter	(Zipkin	et	al.,	2010).	Given	we	evaluated	two	occupancy	models	
(i.e.,	one	model	for	the	camera	trap	data	and	one	for	the	ARU	data),	
we	had	separate	community‐level	parameters	for	mammals	and	for	
songbirds.	We	estimated	posterior	distributions	of	parameters	using	
Markov	Chain	Monte	Carlo	 implemented	 in	JAGS	 (Plummer,	2011)	
through	program	R.	We	generated	three	chains	of	50,000	iterations	

logit
(

�ij

)

=�0i+�1i (slope)j+�2i (distance to water)j

+�3i (distance to pinyon juniper)j+�4i (maximum temperature)j

+�5i (distance to developed area)j
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TA B L E  1  Mammal	species	photographed	(a)	and	songbird	species	recorded	(b)	during	camera	trap	and	automated	recorder	surveys	in	
the	Mojave	Desert	of	California	in	2016,	numbers	of	detections	(n),	projected	estimates	of	occupancy	across	the	region	(ψ)	and	site‐level	
detection	probabilities	(p*)

(a)

Common name n ψ p* Common name n ψ p*

Coyote 204 0.37 0.93 Bighorn	sheep 68 0.03 1.00

Opossum 2 0.01 0.89 Raccoon 3 0.01 0.95

Black‐tailed	jackrabbit 1,090 0.70 1.00 Spotted	skunk 7 0.04 0.40

Bobcat 107 0.20 0.83 Audubon's	cottontail 485 0.22 1.00

Striped	skunk 4 0.01 0.96 American	badger 44 0.19 0.68

Mule	deer 92 0.07 0.93 Grey	fox 48 0.05 0.91

CA	ground	squirrel 1 0.01 0.64 Kit	fox 370 0.41 0.98

Rock	squirrel 10 0.01 0.94

(b)

Common name n ψ p* Common name n ψ p* Common name n ψ p*

Ash‐throated	
flycatcher

272 0.31 0.99 Cliff	swallow 3 0.07 0.34 Ruby‐crowned	
kinglet

3 0.09 0.19

Barn	swallow 1 0.04 0.30 Common	raven 168 0.47 0.74 Rufous‐crowned	
sparrow

7 0.02 0.70

Black‐chinned	
sparrow

4 0.02 0.71 Common	
yellowthroat

25 0.02 1.00 Rock	wren 147 0.19 0.93

Bell's	sparrow 179 0.20 0.93 Crissal	thrasher 53 0.12 0.67 Red‐winged	
blackbird

31 0.02 1.00

Bendire's	thrasher 5 0.13 0.22 Dark‐eyed	junco 1 0.03 0.41 Say's	phoebe 63 0.13 0.90

Bell's	vireo 5 0.01 0.94 Fox	sparrow 3 0.05 0.33 Scott's	oriole 41 0.11 0.81

Bewick's	wren 80 0.10 0.97 Golden‐
crowned 
sparrow

1 0.03 0.41 Song	sparrow 12 0.02 0.84

Blue‐grey	
gnatcatcher

25 0.06 0.81 Great‐tailed	
grackle

2 0.06 0.28 Spotted	towhee 4 0.03 0.52

Brown‐headed	
cowbird

8 0.05 0.49 Hermit	thrush 1 0.03 0.36 Verdin 72 0.11 0.96

Black‐headed	
grosbeak

2 0.06 0.33 House	finch 149 0.26 0.95 Vesper	sparrow 3 0.01 0.66

Blue	grosbeak 10 0.01 1.00 Horned	lark 352 0.42 0.95 White‐crowned	
sparrow

113 0.50 0.18

Black	phoebe 1 0.03 0.42 House	wren 1 0.03 0.50 Western	
kingbird

6 0.02 0.63

Brewer's	blackbird 7 0.11 0.27 Juniper	
titmouse

1 0.03 0.41 Western	
meadowlark

1 0.03 0.39

Brewer's	sparrow 27 0.11 0.23 LeConte's	
thrasher

68 0.19 0.81 Western	
scrub‐jay

24 0.04 0.97

Black‐tailed	
gnatcatcher

85 0.19 0.90 Loggerhead	
shrike

81 0.34 0.69 Western	
tanager

1 0.03 0.42

Black‐throated	
sparrow

636 0.56 1.00 Marsh	wren 16 0.02 1.00 Western	
wood‐pewee

1 0.03 0.40

Bullock's	oriole 8 0.05 0.52 Northern	
mockingbird

64 0.10 0.94 Wilson's	warbler 5 0.06 0.39

Bushtit 13 0.04 0.81 Northern	
rough‐winged	
swallow

3 0.03 0.46 White‐throated	
swift

7 0.06 0.48

(Continues)



6  |     RICH et al.

thinned	by	50	and	used	uninformative	priors	(model	code	presented	
in	Appendix	S2).	We	assessed	model	convergence	using	the	Gelman‐
Rubin	statistic,	where	values	<1.1	 indicated	convergence	 (Gelman,	
Carlin,	Stern,	&	Rubin,	2004).

To	 estimate	 and	 map	 species‐specific	 occupancy	 probabilities	
and	mammal,	songbird	and	overall	(i.e.,	mammal	and	songbird)	rich‐
ness,	we	extrapolated	our	model	results	to	the	entirety	of	California's	
Mojave	Desert	at	a	1	km2	scale.	We	used	these	model‐based	infer‐
ences,	which	rely	on	covariate	associations,	to	help	ensure	that	esti‐
mates	of	occupancy	and	richness	were	representative	of	the	entire	
region	and	not	just	locations	surveyed	(Gregoire,	1998).	To	do	this,	
we	overlaid	a	1	km2	grid	and	calculated	covariate	values	at	the	centre	
point	of	each	grid	cell.	During	each	 iteration,	 the	model	produced	
intercept,	community‐level	beta	and	species‐specific	beta	estimates.	
We	used	these	estimates	and	our	covariate	values	to	generate	spe‐
cies‐	and	grid‐specific	occupancy	probabilities	during	iteration	x.	We	
repeated	this	process	for	each	model	iteration	and	used	these	val‐
ues	 to	 generate	 probability	 distributions	 representing	 species	 and	
grid‐specific	 occupancy	 probabilities.	 Lastly,	 during	 each	 iteration	
we	 also	 summed	 occupancy	 values	 for	mammal	 species,	 songbird	
species	and	all	 species	 to	generate	probability	distributions	 repre‐
senting	grid‐specific	mammal,	songbird	and	overall	richness.

2.5 | Land designations and species richness

We	used	the	Desert	Renewable	Energy	Conservation	Plan	(DRECP,	
2016)	 to	 assign	 five	 land	 designations:	 federally	 protected	 areas,	
conservation	planning	areas,	recreation	management	areas,	military	
land	and	areas	that	are	potential	sites	for	renewable	energy	devel‐
opment.	We	classified	federally	protected	areas	(i.e.,	National	Parks,	
Wilderness	Areas,	California	Desert	National	Conservation	Lands,	
and	BLM	Areas	 of	Critical	 Environmental	 Concern)	 and	 conserva‐
tion	planning	areas	 (i.e.,	private	 lands	and	non‐federal	public	 lands	
that	 are	 a	 conservation	 priority)	 as	 protected	 land.	We	 classified	
recreation	management	areas,	military	 land	and	potential	develop‐
ment	sites	(i.e.,	areas	identified	as	open	to	renewable	energy	devel‐
opment	in	the	BLM's	2016	Record	of	Decision	regarding	the	DRECP)	
as	unprotected	 land.	Next,	 for	our	estimates	of	mammal,	 songbird	

and	overall	 richness,	we	partitioned	high‐richness	areas	 from	 low‐
richness	 areas	 using	 median	 richness	 values.	 Among	 the	 relative	
high‐richness	areas,	we	quantified	the	per	cent	of	these	areas	that	
fell	within	each	land	designation	and	within	protected	versus	unpro‐
tected	land.

2.6 | Occupancy and richness projections

To	 forecast	 modelled	 occupancy	 and	 richness	 estimates,	 we	 used	
2040–2069	 temperature	 projections	 from	 the	 BCM	 (California	
Landscape	Conservation	Cooperative,	2014)	and	2055	land	use	and	
land	cover	projections	from	USGS	(Sleeter	et	al.,	2017).	The	distribu‐
tions	of	pinyon‐juniper	woodlands	and	free	water	will	also	likely	change,	
but	projections	for	these	variables	were	not	available.	Consequently,	
we	 used	 their	 current	 values	 in	 our	 occupancy	 forecasts.	 For	 tem‐
perature,	we	 overlaid	 three	 future	 scenarios	 for	maximum	monthly	
temperature	under	General	Circulation	Model	(GCM)	CMIP‐5	and	rep‐
resentative	concentration	pathway	(RCP)	2.6	(Appendix	S3).	We	then	
calculated	mean	maximum	temperature	values	under	RCP2.6	for	each	
270‐m	pixel	and	extracted	values	for	the	centre	point	of	each	1	km2 
grid	cell.	We	repeated	this	process	for	future	scenarios	under	RCP4.5	
(n	=	2)	and	RCP8.5	(n	=	5;	Appendix	S3).	The	selected	RCPs	include	
mitigation	scenarios	 leading	 to	very	 low	 (RCP2.6),	medium	 (RCP4.5)	
and	very	high	 (RCP8.5)	baseline	emissions	of	greenhouse	gases	and	
air	pollutants	(see	Van	Vuuren	et	al.,	2011	for	details).	For	land	use,	we	
used	 the	projection	based	on	a	mid‐level	human	population	growth	
rate	and	remeasured	distances	to	urban	development.

To	forecast	occupancy	probabilities	and	mammal,	songbird	and	
overall	richness	in	2040–2069,	we	replaced	grid‐specific	values	for	
distance	 to	 developed	 area	 and	 temperature	with	 their	 projected	
values.	We	then	repeated	the	process	described	previously	for	gen‐
erating	probability	distributions	representing	species	and	grid‐spe‐
cific	occupancy	probabilities,	and	grid‐specific	estimates	of	mammal,	
songbird	and	overall	 richness.	Given	we	had	 three	projected	 tem‐
perature	values	(i.e.,	from	RCP2.6,	4.5,	and	8.5),	we	also	had	three	
forecasted	estimates	of	occupancy	and	 richness.	Lastly,	using	me‐
dian	values	from	2016,	we	mapped	areas	predicted	to	have	high	rich‐
ness	in	2040–2069	under	each	of	the	future	climate	scenarios	and	

(b)

Common name n ψ p* Common name n ψ p* Common name n ψ p*

Cactus	wren 224 0.23 1.00 Oak	titmouse 4 0.01 0.86 Yellow‐breasted	
chat

3 0.01 0.83

Cassin's	kingbird 6 0.01 0.97 Orange‐
crowned 
warbler

6 0.03 0.54 Yellow warbler 10 0.02 0.79

Canyon	wren 21 0.02 0.98 Phainopepla 17 0.13 0.41 Yellow‐headed	
blackbird

2 0.02 0.59

Cedar	waxwing 1 0.03 0.45 Pinyon jay 2 0.01 0.66 Yellow‐rumped	
warbler

22 0.14 0.29

Chipping	sparrow 1 0.03 0.42 Pine	siskin 3 0.09 0.26

TA B L E  1   (Continued)
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determined	the	per	cent	of	these	areas	that	fell	within	each	land	use	
designation	and	within	protected	versus	unprotected	land.

3  | RESULTS

3.1 | Multispecies occupancy models

We	photographed	15	mammalian	species	(>0.5	kg)	during	our	7,107	
camera	trap	nights	and	recorded	68	songbird	species	in	our	1,899	5‐
min	acoustic	recordings	(Table	1).	Black‐tailed	jackrabbit	(Lepus cali‐
fornicus; ψ	=	0.70),	kit	fox	(Vulpes macrotis; ψ	=	0.41),	black‐throated	
sparrow	 (Amphispiza bilineata; ψ	=	0.56)	and	white‐crowned	spar‐
row	 (Zonotrichia leucophrys; ψ	 =	 0.50)	 had	 the	 highest	 estimated	
occupancies	(Table	1;	Figure	2).	Many	species,	conversely,	had	low	
estimates	of	occupancy	due	to	their	limited	numbers	of	detections	
(Table	1;	Figure	2).	Detection	probabilities	tended	to	have	a	quad‐
ratic	relationship	with	Julian	day	for	both	the	mammal	community	
and	 the	 songbird	community	 (Table	2;	Appendix	S4).	Further,	we	
were	more	 likely	to	detect	songbirds	 in	areas	with	a	 large	human	
footprint	 but	 low	 level	 of	 background	 noise	 (Table	 2;	 Appendix	
S4).	Mean	 richness	estimates	at	 sampling	 sites	 ranged	 from	1–10	
mammal	species	(x̄	=	2.3),	2–32	songbird	species	(x̄	=	6.8)	and	4–62	
species	 overall	 (x̄	 =	 9.1).	 Grid‐specific	 estimates	 of	 mammal	 and	
songbird	richness	were	highly	correlated	 (r	=	0.95)	with	modelled	
richness	 being	 greatest	 in	 the	 higher	 elevation	 regions,	 such	 as	
within	the	Mojave	National	Preserve	on	the	eastern	border	of	the	
state,	for	both	taxonomic	groups	(Figure	3c,d).

Of	the	covariates	we	included	in	our	models,	maximum	tempera‐
ture	had	the	greatest	influence	on	community‐level	occupancy	for	
both	mammals	and	songbirds,	with	occupancy	tending	to	decrease	
as	 maximum	 temperatures	 increased	 (Table	 2).	 This	 negative	 re‐
lationship	was	also	evident	at	 the	species	 level	 for	6	mammal	and	
25	songbird	species	(Table	2;	Appendix	S4).	The	kit	fox	and	black‐
tailed	 gnatcatcher	 (Polioptila melanura)	 were	 the	 only	 detected	
species	more	 likely	 to	 occupy	 sites	with	 relatively	 high	maximum	
temperatures	(Appendix	S4).	Community‐level	occupancy	was	also	
influenced	by	proximity	to	pinyon‐juniper	woodlands,	with	the	occu‐
pancy	of	mammal	and	songbird	species	tending	to	increase	closer	to	
woodlands	(Table	2).	Songbirds	like	the	Bewick's	wren	(Thryomanes 
bewickii)	and	Crissal	thrasher	(Toxostoma crissale),	and	mammal	spe‐
cies	like	the	bobcat	(Lynx rufus)	and	mule	deer	(Odocoileus hemionus)	
also	had	strong,	negative	relationships	with	distance	to	pinyon‐ju‐
niper	woodlands	 at	 the	 species	 level	 (Appendix	 S4).	 The	 species‐
specific	influence	of	slope	was	variable,	where	species	like	the	grey	
fox	 (Urocyon cinereoargenteus)	 and	 rock	wren	 (Salpinctes obsoletus)	
were	more	likely	to	occupy	steeper	areas,	while	species	like	the	coy‐
ote	(Canis latrans)	and	horned	lark	(Eremophila alpestris)	were	more	
likely	 to	 occupy	 flatter	 areas	 (Table	 2;	 Appendix	 S4).	 Distance	 to	
water	had	a	stronger	influence	on	the	songbird	community	than	the	
mammalian,	with	songbird	occupancy	tending	to	increase	closer	to	
natural	water	sources	(Table	2;	Appendix	S4).	Lastly,	distance	from	
a	developed	area	had	a	weak	 influence	at	the	community	 level	on	
both	mammals	and	songbirds,	but	had	a	strong	negative	 influence	

on	six	songbird	species	(e.g.,	Bell's	sparrow—Artemisiospiza belli)	and	
a	 strong	 positive	 influence	 on	 two	 songbird	 species	 (e.g.,	 Crissal	
thrasher;	Table	2;	Appendix	S4).

3.2 | Land designations and species richness

The	most	prevalent	land	designation	in	the	study	region	was	federally	
protected	areas	 (27,679	km2),	 followed	by	 recreation	management	
areas	(10,775	km2),	military	land	(9,908	km2),	conservation	planning	
areas	(1,672	km2)	and	potential	sites	for	renewable	energy	develop‐
ment	(933	km2;	Figure	1).	Thus,	more	land	was	protected	(58%)	than	
unprotected.	 For	 each	 richness	measure	 (i.e.,	mammals,	 songbirds	
and	overall),	over	50%	of	the	area	classified	as	having	a	high	value	
(i.e.,	grid	value	>	median	value)	fell	within	land	currently	designated	
as	protected	(Table	3).	Among	the	specific	land	designations,	feder‐
ally	protected	areas	encompassed	the	greatest	proportion	of	high‐
richness	areas,	followed	by	military	lands	(Table	3).	Land	designated	
for	energy	development	encompassed	2%	and	3%	of	high‐richness	
areas	for	mammals	and	songbirds,	respectively	(Table	3).

3.3 | Occupancy and richness projections

Maximum	monthly	temperatures	in	the	study	area	were	projected	
to	 increase	by	an	average	of	1.19,	2.35	and	2.98°C	under	RCP2.6,	
4.5	and	8.5	future	scenarios,	respectively,	whereas	mean	distance	to	
urban	development	was	projected	to	decrease	by	just	254	m	on	av‐
erage.	These	forecasted	changes,	namely	the	increase	in	maximum	
temperature,	 resulted	 in	 decreased	 estimates	 of	 occupancy	 from	
2016	to	2040–2069	for	most	species	(Figure	2;	Appendix	S5;	exam‐
ple	displayed	in	Figure	3a).	Kit	fox,	ash‐throated	flycatcher	(Myiarchus 
cinerascens),	black‐tailed	gnatcatcher	and	verdin	(Auriparus flaviceps)	
were	among	the	limited	number	of	species	projected	to	increase	in	
occupancy	(Figures	2	and	3b;	Appendix	S5).	We	note,	however,	that	
projected	occupancy	estimates'	90%	credible	 intervals	overlapped	
current	means	for	most	species	(Figure	2;	Appendix	S5).	Some	of	the	
species	 that	 showed	a	 statistically	 significant	decline	 in	projected	
occupancy	 included	mule	 deer	 and	 black‐throated	 sparrow	 under	
all	RCP	scenarios,	Audubon's	cottontail	(Sylvilagus audubonii),	house	
finch	(Haemorhous mexicanus),	cactus	wren	(Campylorhynchus brun‐
neicapillus),	Bell's	sparrow,	rock	wren	and	Scott's	oriole	(Icterus pari‐
sorum)	under	RCP4.5	and	8.5	scenarios,	and	badger	(Taxidea taxus),	
bobcat	(L. rufus),	Crissal	thrasher	and	ash‐throated	flycatcher	under	
the	 RCP8.5	 scenarios	 (Figure	 2;	 Appendix	 S5).	 Regarding	 species	
richness,	we	again	found	that	grid‐specific	projections	of	mammal	
and	songbird	richness	were	highly	correlated.	We	projected	declines	
in	 overall	 species	 richness	 that	 ranged	 from	 an	 average	 of	 2.5%	
under	RCP2.6	to	19.8%	under	RCP8.5	(Figure	3).

For	 all	 richness	 measures	 and	 for	 all	 future	 temperature	 sce‐
narios,	coverage	of	land	designated	as	having	high	value	decreased	
substantially	 across	 the	Mojave	Desert	 from	 2016	 to	 2040–2069	
(Table	3).	Similar	to	current	modelled	richness,	the	majority	of	these	
high	value	areas	fell	within	 land	designated	as	protected,	 followed	
by	 recreation	 management	 areas	 (Table	 3).	 Lastly,	 we	 projected	
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that	43%	(337	km2),	20%	(159	km2)	and	14%	(108	km2)	of	land	des‐
ignated	 for	 renewable	 energy	 development,	 27%	 (2,760	 km2),	 9%	
(884	 km2)	 and	 4%	 (409	 km2)	 of	 land	 designated	 for	 military,	 and	
24%	(2,709	km2),	14%	(1,585	km2)	and	10%	(1,107	km2)	of	land	des‐
ignated	 for	 recreation	would	be	of	 high	 value	 to	mammals	 and/or	
songbirds	under	RCP2.6,	4.5	and	8.5	future	scenarios	respectively	
km2	(Figure	4;	Appendix	S6).

4  | DISCUSSION

We	used	remote	camera	traps	and	ARUs	to	amass	spatially	explicit	
detection–non‐detection	 data	 and	 generate	 baseline	 estimates	
of	occupancy	for	15	mammal	and	68	songbird	species	across	 the	
Mojave	Desert	 in	California.	Such	fine‐scale	multi‐taxa	data	have	
been	 unavailable	 for	 this	 region,	 despite	 being	 vitally	 needed	 by	

F I G U R E  2  Mean	estimated	occupancy	values,	and	90%	credible	intervals,	for	mammal	(a)	and	songbird	(restricted	to	songbirds	with	
occupancy	estimates	>0.05)	(b)	species	across	the	Mojave	Desert	of	California,	2016.	We	provide	estimates	for	the	current	year,	2016,	and	
forecast	estimates	for	the	years	2040–2069	using	land	use	projections	from	the	United	States	Geological	Survey	and	maximum	monthly	
temperatures	projected	under	General	Circulation	Model	CMIP‐5	and	representative	concentration	pathways	(RCP)	4.5	(see	Appendix	S5	for	
occupancy	projections	under	RCP2.6	and	RCP8.5	future	scenarios)

(a)

(b)
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scientists,	resource	managers	and	policymakers	to	identify	popula‐
tion	trends,	to	effectively	mitigate	large‐scale	ecological	stressors	
and	to	make	informed	land	use	and	wildlife	management	decisions	
(Ahumada	et	al.,	2013;	Pereira	et	al.,	2013;	Steenweg	et	al.,	2017).	
This	data	deficiency,	and	the	focus	of	previous	monitoring	efforts	
on	a	single	species	or	several	species	of	interest,	may	be	attributed	
to	 technological,	 analytical	 and	 budgetary	 constraints.	 Recently,	
however,	emerging	 technologies	such	as	camera	 traps	and	ARUs,	
which	are	autonomously	triggered	to	photograph	a	passing	animal	
or	record	a	vocalizing	taxa,	respectively,	have	made	 it	possible	to	
continuously	collect	 information	on	a	diversity	of	wildlife	species	
with	 limited	 human	 presence	 (Aide	 et	 al.,	 2013;	 Blumstein	 et	 al.,	
2011;	Steenweg	et	al.,	2017).	Further,	analytical	advances,	such	as	
multispecies	hierarchical	occupancy	models,	have	made	it	possible	
to	account	for	observation	error	and	to	integrate	data	across	spe‐
cies,	thus	permitting	composite	analyses	of	communities	and	indi‐
vidual	species	(Dorazio	&	Royle,	2005;	Iknayan	et	al.,	2014;	Zipkin	
et	al.,	2010).	These	advances	have	opened	the	door	to	monitoring	
initiatives	extending	across	greater	taxonomic,	spatial	and	temporal	
scales,	and,	in	so	doing,	have	increased	our	capacity	for	making	in‐
formed	land	use	planning	and	biodiversity	management	decisions.

Our	estimates	of	mammal	and	songbird	richness,	both	current	and	
projected,	were	highly	correlated	(r	>	0.9).	These	results	suggest	that	
mammals	 and	 songbirds	 are	 similarly	 distributed	 across	 the	 region	
and	that	areas	designated	as	being	important	to	the	conservation	of	
one	taxonomic	group	will	likely	be	important	to	the	conservation	of	
the	other.	Specifically,	our	 research	shows	 that	when	 the	manage‐
ment	 goal	 is	 to	 maximize	mammal	 and	 songbird	 occupancy,	 areas	
with	cooler	temperatures	that	are	close	to	pinyon‐juniper	woodlands	
and	 a	 natural	 water	 source	 are	 of	 high	 conservation	 value	 in	 the	
Mojave	Desert.	We	 found	mean	maximum	temperature	negatively	
influenced	 the	 occupancy	 of	 mammal	 and	 songbird	 communities,	

as	well	as	individual	species	(n	=	25).	These	results	highlight	the	im‐
portance	of	protecting	areas	that	may	act	as	climate	refugia,	such	as	
higher	elevations,	shaded	valleys	and	north	facing	slopes	(Bachelet,	
Ferschweiler,	 Sheehan,	 &	 Strittholt,	 2016;	 LaDochy	 et	 al.,	 2007;	
Rapacciuolo	et	al.,	2014;	Seager	et	al.,	2007).	High	elevation	areas	
(defined	here	as	>1,500	m)	encompassed	only	a	small	portion	of	the	
region,	but	given	that	elevation	and	species	richness	were	positively	
correlated	(r	>	0.6),	their	protection	may	be	of	particular	importance.

Mammal	and	bird	communities	were	also	more	likely	to	occupy	
areas	 close	 to	pinyon‐juniper	woodlands.	This	 positive	 association	
was	 likely	because	pinyon‐juniper	woodlands	provide	vertical	hab‐
itat	 heterogeneity	 and,	 in	 turn,	 increased	availability	of	 nest	 sites,	
food	 resources,	 cover	 and	 shade	 (MacArthur	 &	MacArthur,	 1961;	
McCain,	 2009).	 Thus,	 like	 high	 elevations,	 pinyon‐juniper	 wood‐
lands	may	have	high	ecological	value	for	mammals	and	birds	in	the	
region.	We	encourage	future	research	to	assess	a	broader	array	of	
vegetation	communities	as	our	analysis	was	limited	to	pinyon‐juniper	
woodlands.	Vegetation	 like	 Joshua	 trees	and	Mojave	yucca	 (Yucca 
schidigera),	 for	 example,	may	 also	 influence	 species'	 occupancy	 as	
they	too	provide	structural	height	diversity	and	vegetation	complex‐
ity	(Germano	&	Lawhead,	1986).

Lastly,	 the	 avian	 community	 was	 more	 likely	 to	 occupy	 areas	
close	to	natural	water	sources	whereas	for	mammals,	this	relation‐
ship	was	weak.	Water	 is	 a	 critical	 resource	 for	vertebrate	popula‐
tions,	but	in	arid	ecosystems	like	the	Mojave	Desert,	many	mammal	
species	 (e.g.,	 kit	 fox	 and	 lagomorphs)	 have	 developed	 physiolog‐
ical	 and	behavioural	 adaptations	 that	minimize	 their	need	 for	 free	
water	(Golightly	&	Ohmart,	1984;	Nagy,	Shoemaker,	&	Costa,	1976).	
Further,	mammals	may	be	equally	dependent	on	ephemeral	water	
sources,	which	we	were	unable	to	account	for	in	our	analyses.

Projected	 increases	 in	maximum	temperatures,	which	averaged	
1.19–2.98°C	across	 the	 three	RCP	scenarios,	 resulted	 in	an	overall	

TA B L E  2  Mean	(x̄)	and	90%	credible	interval	estimates	for	the	community‐level	hyper‐parameters	hypothesized	to	influence	the	
probability	of	occupancy	and	detection	of	terrestrial	mammal	species	and	songbird	species	in	the	Mojave	Desert	of	California,	2016,	and	the	
number	of	significant	species‐specific	responses	(i.e.,	90%	CI	did	not	overlap	0.0;	Appendix	S4)

Mammals Birds

Community Spp. Community Spp.

x̄ 90% CI + – x̄ 90% CI + –

Occupancy	covariates

Dist.	water −0.08 −0.315	to	0.123 0 0 −0.45 −0.686	to	−0.239 4 12

Slope −0.15 −0.641	to	0.307 3 4 −0.23 −0.388	to	−0.081 2 10

Max	temp. −0.59 −1.067	to	−0.107 1 6 −0.61 −0.814	to	−0.416 1 25

Dist.	develop 0.01 −0.198	to	0.203 0 0 −0.06 −0.217	to	0.083 2 6

Dist.	woodland −0.33 −0.705	to	−0.038 0 3 −0.31 −0.523	to	−0.180 1 11

Detection	covariates

Human	footprint 0.14 −0.103	to	0.366 4 1 0.26 0.122–0.396 13 1

Julian day 0.72 0.250–1.172 0 3 1.74 1.153–2.373 66 0

Julian day2 −0.53 −0.972	to	−0.062 0 5 −2.07 −2.687	to	−1.454 0 61

Noise −0.17 −0.288	to	−0.055 0 11
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F I G U R E  3  Modelled	(a)	Bell's	Sparrow	occupancy,	(b)	kit	fox	occupancy,	(c)	mammal	richness	and	(d)	songbird	richness	in	the	Mojave	
Desert	of	California	in	2016,	including	90%	credible	intervals	(LCI	=	lower	credible	interval;	UCI	=	upper	credible	interval),	and	projected	
occupancy	in	2040–2069.	We	forecasted	occupancy	estimates	using	land	use	projections	from	United	States	Geological	Survey	and	three	
scenarios	for	maximum	monthly	temperature	in	2040–2069	under	General	Circulation	Model	CMIP‐5	and	representative	concentration	
pathways	(RCP)	2.6,	4.5,	and	8.5

(a)

(b)
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decline	in	our	forecasted	estimates	of	occupancy	and	richness	from	
2016	to	2040–2069,	as	well	as	an	overall	decline	in	the	coverage	of	
areas	with	high	conservation	value	(i.e.,	areas	where	richness	value	
was	 greater	 than	 2016	 median	 value).	 As	 expected,	 forecasted	

declines	were	 largest	under	 the	scenario	with	 the	highest	baseline	
emission	rates	(i.e.,	RCP8.5;	Van	Vuuren	et	al.,	2011).	We	note,	how‐
ever,	that	confidence	intervals	for	current	and	forecasted	estimates	
often	overlapped.	Our	 results	 support	 the	 hypothesis	 that	 climate	

(c)

(d)

F I G U R E  3   (Continued)
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change	poses	a	threat	to	biodiversity	in	the	Mojave	Desert	(Bachelet	
et	al.,	2016;	Serra‐Diaz	et	al.,	2014;	Walther	et	al.,	2002).	Thus,	they	
also	emphasize	the	need	for	land	use	and	conservation	planning	that	
is	 informed	 by	 species‐specific	 empirical	 data	 and	 designed	 to	 in‐
crease	the	ability	of	native	species	to	persist	 in	the	face	of	climate	
change	(Cameron	et	al.,	2012;	Heller	&	Zavaleta,	2009).	We	evalu‐
ated	the	potential	impacts	of	increasing	temperatures	and	human	de‐
velopment	on	species	distributions,	but	we	encourage	managers	and	

land	use	planners	 to	 simultaneously	consider	projected	changes	 in	
precipitation,	evapotranspiration,	vegetation	communities	and	 free	
water,	all	of	which	have	also	been	found	to	influence	vertebrate	dis‐
tributions	in	arid	systems	(Illán	et	al.,	2014;	McCreedy	&	van	Riper,	
2014).

We	 found	 14–43,	 10–24	 and	 4%–27%	of	 land	 currently	 desig‐
nated	 for	 renewable	 energy	 development,	 recreation	 and	military	
activities,	 respectively,	 may	 be	 of	 high	 conservation	 value	 in	 the	

Mammal richness Avian richness Overall richness

Overall

%	cover	in	Mojave

2016 49 49 49

RCP2.6 29 28 32

RCP4.5 15 16 16

RCP8.5 11 12 12

Protected

%	federally	protected

2016 51 50 50

RCP2.6 56 52 52

RCP4.5 64 58 59

RCP8.5 69 62 63

%	CPA

2016 7 7 7

RCP2.6 7 9 5

RCP4.5 10 12 11

RCP8.5 10 13 13

Unprotected

%	energy	development

2016 2 3 3

RCP2.6 1 2 2

RCP4.5 1 2 2

RCP8.5 1 2 1

%	recreation

2016 20 19 19

RCP2.6 19 18 22

RCP4.5 19 18 19

RCP8.5 17 17 18

%	military

2016 20 21 21

RCP2.6 17 18 18

RCP4.5 6 10 10

RCP8.5 3 6 5

Note:	Among	the	“high”	richness	areas,	we	present	the	per	cent	that	falls	within	protected	(i.e.,	fed‐
erally	protected	and	conservation	planning	areas—CPA)	and	unprotected	(i.e.,	renewable	energy	
development	sites,	recreation	management	areas,	and	military)	land	designations	in	2016	and	in	
2040–2069.	We	forecasted	occupancy	and	richness	estimates	using	land	use	change	projections	
from	the	United	States	Geological	Survey	and	three	scenarios	for	maximum	monthly	temperature	
in	2040–2069	under	General	Circulation	Model	CMIP‐5	and	representative	concentration	path‐
ways	(RCP)	2.6,	4.5,	and	8.5.

TA B L E  3  Per	cent	cover	of	“high”	(i.e.,	
value	>	median)	richness	areas	in	2016	
and	in	2040–2069	in	the	Mojave	Desert	
of	California,	where	2016	estimates	of	
median	mammal,	songbird	and	overall	
richness	were	2.13,	5.94	and	8.08,	
respectively
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future.	The	Bureau	of	Land	Management	designated	~1,000	km2	of	
land	as	open	to	renewable	energy	development	(DRECP,	2016).	Our	
results	 suggest	 that	a	minimum	of	57%	of	 this	 land	may	strike	 the	
balance	of	being	suitable	for	renewable	energy	development	while	
minimizing	adverse	impacts	on	biodiversity.	Development	in	the	re‐
maining	area,	however,	could	negatively	influence	the	persistence	of	
mammal	and/or	songbird	communities	and	should	be	considered	for	
protection.	Renewable	energy	benefits	the	 long‐term	conservation	
of	 biodiversity	 by	 reducing	 climate	 change,	 but	 careful	 planning	 is	
required	 to	ensure	 that	 future	strongholds	 for	biodiversity	are	not	
destroyed	(Cameron	et	al.,	2012;	Gibson	et	al.,	2017).	While	renew‐
able	energy	development	has	garnered	great	attention	in	the	Mojave	
Desert,	it	is	equally,	if	not	more	important	to	account	for	pressures	
from	recreational	activities	as	this	land	use	encompasses	roughly	11	
times	the	land	area	as	energy	development.	For	example,	the	Bureau	
of	 Land	Management	 should	 consider	 limiting	 off‐highway	 vehicle	
(OHV)	activity	within	the	24%	of	recreation	management	areas	pro‐
jected	to	be	of	high	conservation	value	under	the	RCP2.6	scenario	in‐
cluding,	for	example,	Shadow	Valley,	El	Mirage	and	Castle	Mountain.	
Recreational	OHV	use	in	California's	desert	southwest	is	increasing	
in	popularity,	likely	to	the	detriment	of	flora	and	fauna	(Cordell,	Betz,	
Green,	&	Mou,	2005).	Off‐highway	vehicle	activity	has	been	found	
to	directly	kill	native	plants	and	animals,	alter	animal	movements,	re‐
duce	reproductive	and	nesting	success,	compact	soil,	change	water	

runoff	 patterns,	 and	 increase	 susceptibility	 to	 erosion	 (Barton	 &	
Holmes,	2007;	Groom,	McKinney,	Ball,	&	Winchell,	2007;	Lovich	&	
Bainbridge,	 1999).	 Given	 these	 negative	 impacts,	 restricting	 OHV	
use	in	areas	projected	to	be	of	high	conservation	value	in	the	future	
may	be	an	important	step	towards	minimizing	conflicts	between	rec‐
reation	interests	and	biodiversity	conservation.

Despite	sampling	over	200	sites,	the	strength	of	our	inferences	
was	 limited	given	our	estimates'	 large	90%	credible	 intervals,	our	
single	 season	 of	 data	 and	 variability	 among	 the	 three	 future	 cli‐
mate	 scenarios.	 To	 convey	 this	 uncertainty,	we	presented	 spatial	
projections	based	on	5%	mean	and	95%	credible	interval	estimates	
for	2016	and	for	each	of	the	RCP	scenarios.	This	deviates	from	the	
common	approach	used	 in	 conservation	 science	of	mapping	 spe‐
cies'	current	and	future	distributions,	where	maps	tend	to	represent	
only	mean	values.	We	note	that	our	analyses	were	also	restricted	
to	linear	covariate	relationships,	apart	from	Julian	day,	and	that	we	
did	 not	 directly	 evaluate	 potential	 spatial	 autocorrelation	 among	
our	sampling	sites.	The	spatial	covariates	we	used	in	our	occupancy	
models	 likely	mitigated	 the	potential	 issue	of	 spatial	 autocorrela‐
tion,	 but	 future	 studies	 may	 consider	 using	 spatial	 occupancy	
models	and	assessing	covariate	relationships	in	greater	detail	by	in‐
cluding	polynomial	and	interaction	terms	(Furnas,	Landers,	Callas,	
&	Matthews,	2017;	Johnson,	Conn,	Hooten,	Ray,	&	Pond,	2013).

An	additional	 limitation	of	our	research	is	that	we	frame	conser‐
vation	value	based	exclusively	on	the	richness	of	songbirds	and	me‐
dium‐	to	large‐sized	mammal	species.	While	these	taxonomic	groups	
are	important	to	biodiversity	management,	they	represent	only	a	sub‐
set	of	the	Mojave	Desert's	faunal	community.	Managers	and	decision	
makers	should	expand	beyond	our	species	set	and	consider	an	array	
of	 ecological	 traits	 when	 determining	 a	 land	 parcel's	 conservation	
value.	These	include,	for	example,	distributions	of	threatened	and	en‐
dangered	species	for	which	camera	traps	or	ARUs	may	not	be	the	ap‐
propriate	sampling	method	(e.g.,	small‐bodied	species	or	species	with	
limited	vocalizations),	protected	area	status,	water	source	availability	
(e.g.,	 rivers,	 seeps,	 springs),	 existing	 human	 infrastructure	 or	 occur‐
rences	of	other	flora	and	fauna	(Hernandez	et	al.,	2015;	Randall	et	al.,	
2010).	A	final	limitation	of	our	study	is	that	we	do	not	address	habitat	
fragmentation.	Converting	portions	of	the	Mojave	Desert	into	human‐
altered	landscapes	will	create	a	matrix	of	habitat	ranging	from	suitable	
to	unsuitable	and	from	permeable	to	impermeable	(Leu	et	al.,	2008).	
This	fragmentation	of	wild	desert	landscapes	will	benefit	some	species	
but	negatively	influence	others	and	should	be	considered	during	the	
decision‐making	process	(Leu	et	al.,	2008;	Rodríguez‐Estrella,	2007).

Climate	change	and	anthropogenic	pressures	on	ecosystems	are	
accelerating	within	the	Mojave	Desert,	as	they	are	globally	(Gibson	et	
al.,	2017;	LaDochy	et	al.,	2007;	Leu	et	al.,	2008;	Lovich	&	Bainbridge,	
1999;	Seager	et	al.,	2007).	The	result	is	declining	biodiversity	with	rare	
species	becoming	rarer,	geographic	ranges	shrinking	and	species	be‐
coming	 locally	extinct	 (Randall	 et	 al.,	 2010;	Sauer	et	 al.,	 2017).	Our	
research	demonstrates	the	capacity	of	visual	and	acoustic	sensors	for	
collecting	site‐	and	species‐specific	data	across	large	spatial	scales	that,	
in	turn,	can	be	used	to	detect	biodiversity	changes,	to	address	large‐
scale	ecological	stressors	and	to	 inform	proactive	 land	management	

F I G U R E  4  Land	designated	for	renewable	energy	development,	
recreation	and	military	activities	in	the	Mojave	Desert	of	California.	
We	identify	unprotected	lands	projected	to	be	of	high	value	to	
mammals,	songbirds,	or	both	mammals	and	songbirds	in	2040–2069	
(i.e.,	estimated	mammal	richness	>2.13,	songbird	richness	>5.94)	
and	label	land	parcels	that	encompassed	a	large	proportion	of	this	
high	value	habitat.	We	projected	richness	estimates	using	land	use	
projections	from	United	States	Geological	Survey	and	projected	
maximum	monthly	temperatures	under	General	Circulation	Model	
CMIP‐5	and	representative	concentration	pathways	(RCP)	4.5	(see	
Appendix	S6	for	maps	created	using	RCP2.6	and	RCP8.5	future	
scenarios)
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(Blumstein	et	al.,	2011;	Cameron	et	al.,	2012;	Northrup	&	Wittemyer,	
2013;	Steenweg	et	al.,	2017).	Without	this	real‐time	empirical	data	on	
vertebrate	populations,	managers,	researchers	and	policymakers	are	
limited	 in	 their	ability	 to	design	effective	and	efficient	conservation	
plans.	We	 encourage	 practitioners	 to	 extend	 beyond	 our	 snapshot	
in	time	to	elucidate	trends	in	species	occupancy	and	richness,	and	to	
track,	 improve	and	adapt	policies	and	management	actions	aimed	at	
addressing	 the	 loss	 of	 vertebrate	 populations.	 As	monitoring	 initia‐
tives	grow	in	taxonomic,	spatial	and	temporal	scope,	so	will	our	ability	
to	surmount	the	tremendous	challenge	of	maintaining	and	conserving	
biodiversity.
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